Forecasting the COVID-19 Pandemic in Saudi Arabia Using a Modified Singular Spectrum Analysis Approach: Model Development and Data Analysis (Preprint)

Author:

Alharbi NaderORCID

Abstract

BACKGROUND

Infectious disease is one of the main issues that threatens human health worldwide. The 2019 outbreak of the new coronavirus SARS-CoV-2, which causes the disease COVID-19, has become a serious global pandemic. Many attempts have been made to forecast the spread of the disease using various methods, including time series models. Among the attempts to model the pandemic, to the best of our knowledge, no studies have used the singular spectrum analysis (SSA) technique to forecast confirmed cases.

OBJECTIVE

The primary objective of this paper is to construct a reliable, robust, and interpretable model for describing, decomposing, and forecasting the number of confirmed cases of COVID-19 and predicting the peak of the pandemic in Saudi Arabia.

METHODS

A modified singular spectrum analysis (SSA) approach was applied for the analysis of the COVID-19 pandemic in Saudi Arabia. We proposed this approach and developed it in our previous studies regarding the separability and grouping steps in SSA, which play important roles in reconstruction and forecasting. The modified SSA approach mainly enables us to identify the number of interpretable components required for separability, signal extraction, and noise reduction. The approach was examined using different levels of simulated and real data with different structures and signal-to-noise ratios. In this study, we examined the capability of the approach to analyze COVID-19 data. We then used vector SSA to predict new data points and the peak of the pandemic in Saudi Arabia.

RESULTS

In the first stage, the confirmed daily cases on the first 42 days (March 02 to April 12, 2020) were used and analyzed to identify the value of the number of required eigenvalues (<i>r</i>) for separability between noise and signal. After obtaining the value of <i>r</i>, which was 2, and extracting the signals, vector SSA was used to predict and determine the pandemic peak. In the second stage, we updated the data and included 81 daily case values. We used the same window length and number of eigenvalues for reconstruction and forecasting of the points 90 days ahead. The results of both forecasting scenarios indicated that the peak would occur around the end of May or June 2020 and that the crisis would end between the end of June and the middle of August 2020, with a total number of infected people of approximately 330,000.

CONCLUSIONS

Our results confirm the impressive performance of modified SSA in analyzing COVID-19 data and selecting the value of <i>r</i> for identifying the signal subspace from a noisy time series and then making a reliable prediction of daily confirmed cases using the vector SSA method.

Publisher

JMIR Publications Inc.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3