Validation of a Novel Noninvasive Technology to Estimate Blood Oxygen Saturation Using Green Light: Observational Study (Preprint)

Author:

Gokhale SanjayORCID,Daggubati VinoopORCID,Alexandrakis GeorgiosORCID

Abstract

BACKGROUND

Pulse oximeters work within the red-infrared wavelengths. Therefore, these oximeters produce erratic results in dark-skinned subjects and in subjects with cold extremities. Pulse oximetry is routinely performed in patients with fever; however, an elevation in body temperature decreases the affinity of hemoglobin for oxygen, causing a drop in oxygen saturation or oxyhemoglobin concentrations.

OBJECTIVE

We aimed to determine whether our new investigational device, the Shani device or SH1 (US Patent 11191460), detects a drop in oxygen saturation or a decrease in oxyhemoglobin concentrations.

METHODS

An observational study (phase 1) was performed in two separate groups to validate measurements of hemoglobin and oxygen concentrations, including 39 participants recruited among current university students and staff aged 20-40 years. All volunteers completed baseline readings using the SH1 device and the commercially available Food and Drug Administration–approved pulse oximeter Masimo. SH1 uses two light-emitting diodes in which the emitted wavelengths match with absorption peaks of oxyhemoglobin (hemoglobin combined with oxygen) and deoxyhemoglobin (hemoglobin without oxygen or reduced hemoglobin). Total hemoglobin was calculated as the sum of oxyhemoglobin and deoxyhemoglobin. Subsequently, 16 subjects completed the “heat jacket study” and the others completed the “blood donation study.” Masimo was consistently used on the finger for comparison. The melanin level was accounted for using the von Luschan skin color scale (VLS) and a specifically designed algorithm. We here focus on the results of the heat jacket study, in which the subject wore a double-layered heated jacket and pair of trousers including a network of polythene tubules along with an inlet and outlet. Warm water was circulated to increase the body temperature by 0.5-0.8 °C above the baseline body temperature. We expected a slight drop in oxyhemoglobin concentrations in the heating phase at the tissue level.

RESULTS

The mean age of the participants was 24.1 (SD 0.8) years. The skin tone varied from 12 to 36 on the VLS, representing a uniform distribution with one-third of the participants having fair skin, brown skin, and dark skin, respectively. Using a specific algorithm and software, the reflection ratio for oxyhemoglobin was displayed on the screen of the device along with direct hemoglobin values. The SH1 device picked up more minor changes in oxyhemoglobin levels after a change in body temperature compared to the pulse oximeter, with a maximum drop in oxyhemoglobin concentration detected of 6.5% and 2.54%, respectively.

CONCLUSIONS

Our new investigational device SH1 measures oxygen saturation at the tissue level by reflectance spectroscopy using green wavelengths. This device fared well regardless of skin color. This device can thus eliminate racial disparity in these key biomarker assessments. Moreover, since the light is shone on the wrist, SH1 can be readily miniaturized into a wearable device.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3