Traditional Machine Learning Models and Bidirectional Encoder Representations From Transformer (BERT)–Based Automatic Classification of Tweets About Eating Disorders: Algorithm Development and Validation Study

Author:

Benítez-Andrades José AlbertoORCID,Alija-Pérez José-ManuelORCID,Vidal Maria-EstherORCID,Pastor-Vargas RafaelORCID,García-Ordás María TeresaORCID

Abstract

Background Eating disorders affect an increasing number of people. Social networks provide information that can help. Objective We aimed to find machine learning models capable of efficiently categorizing tweets about eating disorders domain. Methods We collected tweets related to eating disorders, for 3 consecutive months. After preprocessing, a subset of 2000 tweets was labeled: (1) messages written by people suffering from eating disorders or not, (2) messages promoting suffering from eating disorders or not, (3) informative messages or not, and (4) scientific or nonscientific messages. Traditional machine learning and deep learning models were used to classify tweets. We evaluated accuracy, F1 score, and computational time for each model. Results A total of 1,058,957 tweets related to eating disorders were collected. were obtained in the 4 categorizations, with The bidirectional encoder representations from transformer–based models had the best score among the machine learning and deep learning techniques applied to the 4 categorization tasks (F1 scores 71.1%-86.4%). Conclusions Bidirectional encoder representations from transformer–based models have better performance, although their computational cost is significantly higher than those of traditional techniques, in classifying eating disorder–related tweets.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3