Personalization of Mobile Apps for Health Behavior Change: Protocol for a Cross-sectional Study

Author:

Gosetto LaetitiaORCID,Pittavino MartaORCID,Falquet GillesORCID,Ehrler FredericORCID

Abstract

Background Mobile health apps have the potential to motivate people to adopt healthier behavior, but many fail to maintain this behavior over time. However, it has been suggested that long-term adherence can be improved by personalizing the proposed interventions. Based on the literature, we created a conceptual framework for selecting appropriate functionalities according to the user's profile. Objective This cross-sectional study aims to investigate if the relationships linking functionalities and profiles proposed in our conceptual framework are confirmed by user preferences. Methods A web-based questionnaire comprising several sections was developed to determine the mobile app functionalities most likely to promote healthier behavior. First, participants completed questionnaires to define the user profile (Big Five Inventory-10, Hexad Scale, and perception of the social norm using dimensions of the Theory of Planned Behavior). Second, participants were asked to select the 5 functionalities they considered to be the most relevant to motivate healthier behavior and to evaluate them on a score ranging from 0 to 100. We will perform logistic regressions with the selected functionalities as dependent variables and with the 3 profile scales as predictors to allow us to understand the effect of the participants’ scores on each of the 3 profile scales on the 5 selected functionalities. In addition, we will perform logistic ordinal regressions with the motivation score of the functionalities chosen as dependent variables and with scores of the 3 profile scales as predictors to determine whether the scores on the different profile scales predict the functionality score. Results Data collection was conducted between July and December 2021. Analysis of responses began in January 2022, with the publication of results expected by the end of 2022. Conclusions This study will allow us to validate our conceptual model by defining the preferred functionalities according to user profiles. International Registered Report Identifier (IRRID) RR1-10.2196/38603

Publisher

JMIR Publications Inc.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3