Wound Image Quality From a Mobile Health Tool for Home-Based Chronic Wound Management With Real-Time Quality Feedback: Randomized Feasibility Study

Author:

Zhang JiaORCID,Mihai CarinaORCID,Tüshaus LauraORCID,Scebba GaetanoORCID,Distler OliverORCID,Karlen WalterORCID

Abstract

Background Travel to clinics for chronic wound management is burdensome to patients. Remote assessment and management of wounds using mobile and telehealth approaches can reduce this burden and improve patient outcomes. An essential step in wound documentation is the capture of wound images, but poor image quality can have a negative influence on the reliability of the assessment. To date, no study has investigated the quality of remotely acquired wound images and whether these are suitable for wound self-management and telemedical interpretation of wound status. Objective Our goal was to develop a mobile health (mHealth) tool for the remote self-assessment of digital ulcers (DUs) in patients with systemic sclerosis (SSc). We aimed to define and validate objective measures for assessing the image quality, evaluate whether an automated feedback feature based on real-time assessment of image quality improves the overall quality of acquired wound images, and evaluate the feasibility of deploying the mHealth tool for home-based chronic wound self-monitoring by patients with SSc. Methods We developed an mHealth tool composed of a wound imaging and management app, a custom color reference sticker, and a smartphone holder. We introduced 2 objective image quality parameters based on the sharpness and presence of the color checker to assess the quality of the image during acquisition and enable a quality feedback mechanism in an advanced version of the app. We randomly assigned patients with SSc and DU to the 2 device groups (basic and feedback) to self-document their DU at home over 8 weeks. The color checker detection ratio (CCDR) and color checker sharpness (CCS) were compared between the 2 groups. We evaluated the feasibility of the mHealth tool by analyzing the usability feedback from questionnaires, user behavior and timings, and the overall quality of the wound images. Results A total of 21 patients were enrolled, of which 15 patients were included in the image quality analysis. The average CCDR was 0.96 (191/199) in the feedback group and 0.86 (158/183) in the basic group. The feedback group showed significantly higher (P<.001) CCS compared to the basic group. The usability questionnaire results showed that the majority of patients were satisfied with the tool, but could benefit from disease-specific adaptations. The median assessment duration was <50 seconds in all patients, indicating the mHealth tool was efficient to use and could be integrated into the daily routine of patients. Conclusions We developed an mHealth tool that enables patients with SSc to acquire good-quality DU images and demonstrated that it is feasible to deploy such an app in this patient group. The feedback mechanism improved the overall image quality. The introduced technical solutions consist of a further step towards reliable and trustworthy digital health for home-based self-management of wounds.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3