Guidelines for Artificial Intelligence in Medicine: Literature Review and Content Analysis of Frameworks

Author:

Crossnohere Norah LORCID,Elsaid MohamedORCID,Paskett JonathanORCID,Bose-Brill SeuliORCID,Bridges John F PORCID

Abstract

Background Artificial intelligence (AI) is rapidly expanding in medicine despite a lack of consensus on its application and evaluation. Objective We sought to identify current frameworks guiding the application and evaluation of AI for predictive analytics in medicine and to describe the content of these frameworks. We also assessed what stages along the AI translational spectrum (ie, AI development, reporting, evaluation, implementation, and surveillance) the content of each framework has been discussed. Methods We performed a literature review of frameworks regarding the oversight of AI in medicine. The search included key topics such as “artificial intelligence,” “machine learning,” “guidance as topic,” and “translational science,” and spanned the time period 2014-2022. Documents were included if they provided generalizable guidance regarding the use or evaluation of AI in medicine. Included frameworks are summarized descriptively and were subjected to content analysis. A novel evaluation matrix was developed and applied to appraise the frameworks’ coverage of content areas across translational stages. Results Fourteen frameworks are featured in the review, including six frameworks that provide descriptive guidance and eight that provide reporting checklists for medical applications of AI. Content analysis revealed five considerations related to the oversight of AI in medicine across frameworks: transparency, reproducibility, ethics, effectiveness, and engagement. All frameworks include discussions regarding transparency, reproducibility, ethics, and effectiveness, while only half of the frameworks discuss engagement. The evaluation matrix revealed that frameworks were most likely to report AI considerations for the translational stage of development and were least likely to report considerations for the translational stage of surveillance. Conclusions Existing frameworks for the application and evaluation of AI in medicine notably offer less input on the role of engagement in oversight and regarding the translational stage of surveillance. Identifying and optimizing strategies for engagement are essential to ensure that AI can meaningfully benefit patients and other end users.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Reference61 articles.

1. Artificial intelligence in medicine

2. Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI Extension

3. Artificial Intelligence in Healthcare Market by Offering, Technology, Application, End User and Geography - Global Forecast to 2027ReportLinker2021102021-07-14https://tinyurl.com/4dh7bdn7

4. Advancing Drug Discovery via Artificial Intelligence

5. Overview of artificial intelligence in medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3