Deep Learning–Based Prediction of Refractive Error Using Photorefraction Images Captured by a Smartphone: Model Development and Validation Study

Author:

Chun JaehyeongORCID,Kim YoungjunORCID,Shin Kyoung YoonORCID,Han Sun HyupORCID,Oh Sei YeulORCID,Chung Tae-YoungORCID,Park Kyung-AhORCID,Lim Dong HuiORCID

Abstract

Background Accurately predicting refractive error in children is crucial for detecting amblyopia, which can lead to permanent visual impairment, but is potentially curable if detected early. Various tools have been adopted to more easily screen a large number of patients for amblyopia risk. Objective For efficient screening, easy access to screening tools and an accurate prediction algorithm are the most important factors. In this study, we developed an automated deep learning–based system to predict the range of refractive error in children (mean age 4.32 years, SD 1.87 years) using 305 eccentric photorefraction images captured with a smartphone. Methods Photorefraction images were divided into seven classes according to their spherical values as measured by cycloplegic refraction. Results The trained deep learning model had an overall accuracy of 81.6%, with the following accuracies for each refractive error class: 80.0% for ≤−5.0 diopters (D), 77.8% for >−5.0 D and ≤−3.0 D, 82.0% for >−3.0 D and ≤−0.5 D, 83.3% for >−0.5 D and <+0.5 D, 82.8% for ≥+0.5 D and <+3.0 D, 79.3% for ≥+3.0 D and <+5.0 D, and 75.0% for ≥+5.0 D. These results indicate that our deep learning–based system performed sufficiently accurately. Conclusions This study demonstrated the potential of precise smartphone-based prediction systems for refractive error using deep learning and further yielded a robust collection of pediatric photorefraction images.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3