Chinese-Named Entity Recognition From Adverse Drug Event Records: Radical Embedding-Combined Dynamic Embedding–Based BERT in a Bidirectional Long Short-term Conditional Random Field (Bi-LSTM-CRF) Model

Author:

Wu HongORCID,Ji JiatongORCID,Tian HaimeiORCID,Chen YaoORCID,Ge WeihongORCID,Zhang HaixiaORCID,Yu FengORCID,Zou JianjunORCID,Nakamura MitsuhiroORCID,Liao JunORCID

Abstract

Background With the increasing variety of drugs, the incidence of adverse drug events (ADEs) is increasing year by year. Massive numbers of ADEs are recorded in electronic medical records and adverse drug reaction (ADR) reports, which are important sources of potential ADR information. Meanwhile, it is essential to make latent ADR information automatically available for better postmarketing drug safety reevaluation and pharmacovigilance. Objective This study describes how to identify ADR-related information from Chinese ADE reports. Methods Our study established an efficient automated tool, named BBC-Radical. BBC-Radical is a model that consists of 3 components: Bidirectional Encoder Representations from Transformers (BERT), bidirectional long short-term memory (bi-LSTM), and conditional random field (CRF). The model identifies ADR-related information from Chinese ADR reports. Token features and radical features of Chinese characters were used to represent the common meaning of a group of words. BERT and Bi-LSTM-CRF were novel models that combined these features to conduct named entity recognition (NER) tasks in the free-text section of 24,890 ADR reports from the Jiangsu Province Adverse Drug Reaction Monitoring Center from 2010 to 2016. Moreover, the man-machine comparison experiment on the ADE records from Drum Tower Hospital was designed to compare the NER performance between the BBC-Radical model and a manual method. Results The NER model achieved relatively high performance, with a precision of 96.4%, recall of 96.0%, and F1 score of 96.2%. This indicates that the performance of the BBC-Radical model (precision 87.2%, recall 85.7%, and F1 score 86.4%) is much better than that of the manual method (precision 86.1%, recall 73.8%, and F1 score 79.5%) in the recognition task of each kind of entity. Conclusions The proposed model was competitive in extracting ADR-related information from ADE reports, and the results suggest that the application of our method to extract ADR-related information is of great significance in improving the quality of ADR reports and postmarketing drug safety evaluation.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3