Using Digital Technology to Reduce the Prevalence of Mental Health Disorders in Populations: Time for a New Approach

Author:

Taylor C BarrORCID,Ruzek Josef IORCID,Fitzsimmons-Craft Ellen EORCID,Sadeh-Sharvit ShiriORCID,Topooco NairaORCID,Weissman Ruth StriegelORCID,Eisenberg DanielORCID,Mohr DavidORCID,Graham AndreaORCID,Jacobi CorinnaORCID,Oldenburg BrianORCID

Abstract

Digital technology, which includes the collection, analysis, and use of data from a variety of digital devices, has the potential to reduce the prevalence of disorders and improve mental health in populations. Among the many advantages of digital technology is that it allows preventive and clinical interventions, both of which are needed to reduce the prevalence of mental health disorders, to be feasibly integrated into health care and community delivery systems and delivered at scale. However, the use of digital technology also presents several challenges, including how systems can manage and implement interventions in a rapidly changing digital environment and handle critical issues that affect population-wide outcomes, including reaching the targeted population, obtaining meaningful levels of uptake and use of interventions, and achieving significant outcomes. We describe a possible solution, which is to have an outcome optimization team that focuses on the dynamic use of data to adapt interventions for populations, while at the same time, addressing the complex relationships among reach, uptake, use, and outcome. We use the example of eating disorders in young people to illustrate how this solution could be implemented at scale. We also discuss system, practitioner-related, and other issues related to the adaptation of such an approach. Digital technology has great potential for facilitating the reduction of mental illness rates in populations. However, achieving this goal will require the implementation of new approaches. As a solution, we argue for the need to create outcome optimization teams, tasked with integrating data from various sources and using advanced data analytics and new designs to develop interventions/strategies to increase reach, uptake, use/engagement, and outcomes for both preventive and treatment interventions.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3