Incidence, Risk, and Clinical Course of New-Onset Diabetes in Long COVID: Protocol for a Systematic Review and Meta-Analysis of Cohort Studies

Author:

Talanki Ananya SriORCID,Bajaj NehaORCID,Trehan TwinkleORCID,Thirunavukkarasu SathishORCID

Abstract

Background COVID-19, an infectious disease pandemic, affected millions of people globally, resulting in high morbidity and mortality. Causing further concern, significant proportions of COVID-19 survivors endure the lingering health effects of SARS-CoV-2, the pathogen that causes COVID-19. One of the diseases manifesting as a postacute sequela of COVID-19 (also known as “long COVID”) is new-onset diabetes. Objective The aim of this study is to examine the incidence of new-onset diabetes in patients with long COVID and assess the excess risk compared with individuals who tested negative for COVID-19. The study also aims to estimate the population-attributable fraction for COVID-19 as a risk factor for new-onset diabetes in long COVID and investigate the clinical course of new-onset diabetes cases. Methods This is a protocol for a systematic review and meta-analysis. PubMed, MEDLINE, Embase, Scopus, and Web of Science databases will be systematically searched to identify articles published between December 2019 and July 2024. A comprehensive search strategy for each database will be developed using a combination of Medical Subject Headings terms, subject headings, and text words to identify eligible studies. Cohort studies and randomized controlled trials (only control arms) involving patients with COVID-19 of any age, with follow-up data on new-onset diabetes in long COVID, will be considered for inclusion. Controls will comprise individuals who tested negative for COVID-19, with or without other respiratory tract infections. Three independent reviewers (AST, NB, and TT) will perform article selection, data extraction, and quality assessment of the studies. A fourth reviewer (ST) will review the identified studies for final inclusion in the analysis. The random-effects DerSimonian-Laird models will be used to estimate the pooled incidence proportion (%), incidence rate of diabetes (per 1000 person-years), and risk ratio (with 95% CIs) for diabetes incidence. Results A total of 1972 articles were identified through the initial search conducted in August 2023. After excluding duplicates, conducting title and abstract screening, and completing full-text reviews, 41 articles were found to be eligible for inclusion. The search will be updated in July 2024. Currently, data extraction is underway, and the meta-analysis is expected to be completed in August 2024. Publication of the study findings is anticipated by the end of 2024. Conclusions The study findings should provide valuable insights to inform both clinical practice and public health policies regarding the effective management of new-onset diabetes in patients with long COVID. International Registered Report Identifier (IRRID) DERR1-10.2196/54853

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3