Information Retrieval in an Infodemic: The Case of COVID-19 Publications

Author:

Teodoro DouglasORCID,Ferdowsi SohrabORCID,Borissov NikolayORCID,Kashani ElhamORCID,Vicente Alvarez DavidORCID,Copara JennyORCID,Gouareb RachaORCID,Naderi NonaORCID,Amini PooryaORCID

Abstract

Background The COVID-19 global health crisis has led to an exponential surge in published scientific literature. In an attempt to tackle the pandemic, extremely large COVID-19–related corpora are being created, sometimes with inaccurate information, which is no longer at scale of human analyses. Objective In the context of searching for scientific evidence in the deluge of COVID-19–related literature, we present an information retrieval methodology for effective identification of relevant sources to answer biomedical queries posed using natural language. Methods Our multistage retrieval methodology combines probabilistic weighting models and reranking algorithms based on deep neural architectures to boost the ranking of relevant documents. Similarity of COVID-19 queries is compared to documents, and a series of postprocessing methods is applied to the initial ranking list to improve the match between the query and the biomedical information source and boost the position of relevant documents. Results The methodology was evaluated in the context of the TREC-COVID challenge, achieving competitive results with the top-ranking teams participating in the competition. Particularly, the combination of bag-of-words and deep neural language models significantly outperformed an Okapi Best Match 25–based baseline, retrieving on average, 83% of relevant documents in the top 20. Conclusions These results indicate that multistage retrieval supported by deep learning could enhance identification of literature for COVID-19–related questions posed using natural language.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3