A Standardized Clinical Data Harmonization Pipeline for Scalable AI Application Deployment (FHIR-DHP): Validation and Usability Study

Author:

Williams ElenaORCID,Kienast ManuelORCID,Medawar EvelynORCID,Reinelt JanisORCID,Merola AlbertoORCID,Klopfenstein Sophie Anne InesORCID,Flint Anne RikeORCID,Heeren PatrickORCID,Poncette Akira-SebastianORCID,Balzer FelixORCID,Beimes JulianORCID,von Bünau PaulORCID,Chromik JonasORCID,Arnrich BertORCID,Scherf NicoORCID,Niehaus SebastianORCID

Abstract

Background Increasing digitalization in the medical domain gives rise to large amounts of health care data, which has the potential to expand clinical knowledge and transform patient care if leveraged through artificial intelligence (AI). Yet, big data and AI oftentimes cannot unlock their full potential at scale, owing to nonstandardized data formats, lack of technical and semantic data interoperability, and limited cooperation between stakeholders in the health care system. Despite the existence of standardized data formats for the medical domain, such as Fast Healthcare Interoperability Resources (FHIR), their prevalence and usability for AI remain limited. Objective In this paper, we developed a data harmonization pipeline (DHP) for clinical data sets relying on the common FHIR data standard. Methods We validated the performance and usability of our FHIR-DHP with data from the Medical Information Mart for Intensive Care IV database. Results We present the FHIR-DHP workflow in respect of the transformation of “raw” hospital records into a harmonized, AI-friendly data representation. The pipeline consists of the following 5 key preprocessing steps: querying of data from hospital database, FHIR mapping, syntactic validation, transfer of harmonized data into the patient-model database, and export of data in an AI-friendly format for further medical applications. A detailed example of FHIR-DHP execution was presented for clinical diagnoses records. Conclusions Our approach enables the scalable and needs-driven data modeling of large and heterogenous clinical data sets. The FHIR-DHP is a pivotal step toward increasing cooperation, interoperability, and quality of patient care in the clinical routine and for medical research.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3