Investigating Health Context Using a Spatial Data Analytical Tool: Development of a Geospatial Big Data Ecosystem

Author:

Haithcoat TimothyORCID,Liu DanluORCID,Young TiffanyORCID,Shyu Chi-RenORCID

Abstract

Background Enabling the use of spatial context is vital to understanding today’s digital health problems. Any given location is associated with many different contexts. The strategic transformation of population health, epidemiology, and eHealth studies requires vast amounts of integrated digital data. Needed is a novel analytical framework designed to leverage location to create new contextual knowledge. The Geospatial Analytical Research Knowledgebase (GeoARK), a web-based research resource has robust, locationally integrated, social, environmental, and infrastructural information to address today’s complex questions, investigate context, and spatially enable health investigations. GeoARK is different from other Geographic Information System (GIS) resources in that it has taken the layered world of the GIS and flattened it into a big data table that ties all the data and information together using location and developing its context. Objective It is paramount to build a robust spatial data analytics framework that integrates social, environmental, and infrastructural knowledge to empower health researchers’ use of geospatial context to timely answer population health issues. The goal is twofold in that it embodies an innovative technological approach and serves to ease the educational burden for health researchers to think spatially about their problems. Methods A unique analytical tool using location as the key was developed. It allows integration across source, geography, and time to create a geospatial big table with over 162 million individual locations (X-Y points that serve as rows) and 5549 attributes (represented as columns). The concept of context (adjacency, proximity, distance, etc) is quantified through geoanalytics and captured as new distance, density, or neighbor attributes within the system. Development of geospatial analytics permits contextual extraction and investigator-initiated eHealth and mobile health (mHealth) analysis across multiple attributes. Results We built a unique geospatial big data ecosystem called GeoARK. Analytics on this big table occur across resolution groups, sources, and geographies for extraction and analysis of information to gain new insights. Case studies, including telehealth assessment in North Carolina, national income inequality and health outcome disparity, and a Missouri COVID-19 risk assessment, demonstrate the capability to support robust and efficient geospatial understanding of a wide spectrum of population health questions. Conclusions This research identified, compiled, transformed, standardized, and integrated multifaceted data required to better understand the context of health events within a large location-enabled database. The GeoARK system empowers health professionals to engage more complex research where the synergisms of health and geospatial information will be robustly studied beyond what could be accomplished today. No longer is the need to know how to perform geospatial processing an impediment to the health researcher, but rather the development of how to think spatially becomes the greater challenge.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3