Natural Language Processing of Referral Letters for Machine Learning–Based Triaging of Patients With Low Back Pain to the Most Appropriate Intervention: Retrospective Study

Author:

Fudickar SebastianORCID,Bantel CarstenORCID,Spieker JannikORCID,Töpfer HeinrichORCID,Stegeman PatrickORCID,Schiphorst Preuper Henrica RORCID,Reneman Michiel FORCID,Wolff André PORCID,Soer RemkoORCID

Abstract

Background Decision support systems (DSSs) for suggesting optimal treatments for individual patients with low back pain (LBP) are currently insufficiently accurate for clinical application. Most of the input provided to train these systems is based on patient-reported outcome measures. However, with the appearance of electronic health records (EHRs), additional qualitative data on reasons for referrals and patients’ goals become available for DSSs. Currently, no decision support tools cover a wide range of biopsychosocial factors, including referral letter information to help clinicians triage patients to the optimal LBP treatment. Objective The objective of this study was to investigate the added value of including qualitative data from EHRs and referral letters to the accuracy of a quantitative DSS for patients with LBP. Methods A retrospective study was conducted in a clinical cohort of Dutch patients with LBP. Patients filled out a baseline questionnaire about demographics, pain, disability, work status, quality of life, medication, psychosocial functioning, comorbidity, history, and duration of pain. Referral reasons and patient requests for help (patient goals) were extracted via natural language processing (NLP) and enriched in the data set. For decision support, these data were considered independent factors for triage to neurosurgery, anesthesiology, rehabilitation, or minimal intervention. Support vector machine, k-nearest neighbor, and multilayer perceptron models were trained for 2 conditions: with and without consideration of the referral letter content. The models’ accuracies were evaluated via F1-scores, and confusion matrices were used to predict the treatment path (out of 4 paths) with and without additional referral parameters. Results Data from 1608 patients were evaluated. The evaluation indicated that 2 referral reasons from the referral letters (for anesthesiology and rehabilitation intervention) increased the F1-score accuracy by up to 19.5% for triaging. The confusion matrices confirmed the results. Conclusions This study indicates that data enriching by adding NLP-based extraction of the content of referral letters increases the model accuracy of DSSs in suggesting optimal treatments for individual patients with LBP. Overall model accuracies were considered low and insufficient for clinical application.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3