Continuous Data-Driven Monitoring in Critical Congenital Heart Disease: Clinical Deterioration Model Development

Author:

Zoodsma Ruben SORCID,Bosch RianORCID,Alderliesten ThomasORCID,Bollen Casper WORCID,Kappen Teus HORCID,Koomen ErikORCID,Siebes ArnoORCID,Nijman JoppeORCID

Abstract

Background Critical congenital heart disease (cCHD)—requiring cardiac intervention in the first year of life for survival—occurs globally in 2-3 of every 1000 live births. In the critical perioperative period, intensive multimodal monitoring at a pediatric intensive care unit (PICU) is warranted, as their organs—especially the brain—may be severely injured due to hemodynamic and respiratory events. These 24/7 clinical data streams yield large quantities of high-frequency data, which are challenging in terms of interpretation due to the varying and dynamic physiology innate to cCHD. Through advanced data science algorithms, these dynamic data can be condensed into comprehensible information, reducing the cognitive load on the medical team and providing data-driven monitoring support through automated detection of clinical deterioration, which may facilitate timely intervention. Objective This study aimed to develop a clinical deterioration detection algorithm for PICU patients with cCHD. Methods Retrospectively, synchronous per-second data of cerebral regional oxygen saturation (rSO2) and 4 vital parameters (respiratory rate, heart rate, oxygen saturation, and invasive mean blood pressure) in neonates with cCHD admitted to the University Medical Center Utrecht, the Netherlands, between 2002 and 2018 were extracted. Patients were stratified based on mean oxygen saturation during admission to account for physiological differences between acyanotic and cyanotic cCHD. Each subset was used to train our algorithm in classifying data as either stable, unstable, or sensor dysfunction. The algorithm was designed to detect combinations of parameters abnormal to the stratified subpopulation and significant deviations from the patient’s unique baseline, which were further analyzed to distinguish clinical improvement from deterioration. Novel data were used for testing, visualized in detail, and internally validated by pediatric intensivists. Results A retrospective query yielded 4600 hours and 209 hours of per-second data in 78 and 10 neonates for, respectively, training and testing purposes. During testing, stable episodes occurred 153 times, of which 134 (88%) were correctly detected. Unstable episodes were correctly noted in 46 of 57 (81%) observed episodes. Twelve expert-confirmed unstable episodes were missed in testing. Time-percentual accuracy was 93% and 77% for, respectively, stable and unstable episodes. A total of 138 sensorial dysfunctions were detected, of which 130 (94%) were correct. Conclusions In this proof-of-concept study, a clinical deterioration detection algorithm was developed and retrospectively evaluated to classify clinical stability and instability, achieving reasonable performance considering the heterogeneous population of neonates with cCHD. Combined analysis of baseline (ie, patient-specific) deviations and simultaneous parameter-shifting (ie, population-specific) proofs would be promising with respect to enhancing applicability to heterogeneous critically ill pediatric populations. After prospective validation, the current—and comparable—models may, in the future, be used in the automated detection of clinical deterioration and eventually provide data-driven monitoring support to the medical team, allowing for timely intervention.

Publisher

JMIR Publications Inc.

Subject

Cardiology and Cardiovascular Medicine,Health Informatics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3