The Impact of Explanations on Layperson Trust in Artificial Intelligence–Driven Symptom Checker Apps: Experimental Study

Author:

Woodcock ClaireORCID,Mittelstadt BrentORCID,Busbridge DanORCID,Blank GrantORCID

Abstract

Background Artificial intelligence (AI)–driven symptom checkers are available to millions of users globally and are advocated as a tool to deliver health care more efficiently. To achieve the promoted benefits of a symptom checker, laypeople must trust and subsequently follow its instructions. In AI, explanations are seen as a tool to communicate the rationale behind black-box decisions to encourage trust and adoption. However, the effectiveness of the types of explanations used in AI-driven symptom checkers has not yet been studied. Explanations can follow many forms, including why-explanations and how-explanations. Social theories suggest that why-explanations are better at communicating knowledge and cultivating trust among laypeople. Objective The aim of this study is to ascertain whether explanations provided by a symptom checker affect explanatory trust among laypeople and whether this trust is impacted by their existing knowledge of disease. Methods A cross-sectional survey of 750 healthy participants was conducted. The participants were shown a video of a chatbot simulation that resulted in the diagnosis of either a migraine or temporal arteritis, chosen for their differing levels of epidemiological prevalence. These diagnoses were accompanied by one of four types of explanations. Each explanation type was selected either because of its current use in symptom checkers or because it was informed by theories of contrastive explanation. Exploratory factor analysis of participants’ responses followed by comparison-of-means tests were used to evaluate group differences in trust. Results Depending on the treatment group, two or three variables were generated, reflecting the prior knowledge and subsequent mental model that the participants held. When varying explanation type by disease, migraine was found to be nonsignificant (P=.65) and temporal arteritis, marginally significant (P=.09). Varying disease by explanation type resulted in statistical significance for input influence (P=.001), social proof (P=.049), and no explanation (P=.006), with counterfactual explanation (P=.053). The results suggest that trust in explanations is significantly affected by the disease being explained. When laypeople have existing knowledge of a disease, explanations have little impact on trust. Where the need for information is greater, different explanation types engender significantly different levels of trust. These results indicate that to be successful, symptom checkers need to tailor explanations to each user’s specific question and discount the diseases that they may also be aware of. Conclusions System builders developing explanations for symptom-checking apps should consider the recipient’s knowledge of a disease and tailor explanations to each user’s specific need. Effort should be placed on generating explanations that are personalized to each user of a symptom checker to fully discount the diseases that they may be aware of and to close their information gap.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Reference102 articles.

1. Universal Declaration of Human RightsUnited Nations2021-09-23https://www.un.org/en/universal-declaration-human-rights/

2. World report on ageing and healthWorld Health Organization2021-09-23https://www.who.int/ageing/publications/world-report-2015/en/

3. Tracking universal health coverage: 2017 global monitoring reportWorld Health Organization and International Bank for Reconstruction and Development / The World Bank20172021-09-23https://apps.who.int/iris/bitstream/handle/10665/259817/9789241513555-eng.pdf

4. DukeSBabylon gets a healthy boost for its symptom-checking appThe Times20202021-09-23https://www.thetimes.co.uk/article/babylon-gets-a-healthy-boost-for-its-symptom-checking-app-kfnwnqsxl

5. Evaluation of symptom checkers for self diagnosis and triage: audit study

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3