Impact Analysis of COVID-19 Pandemic on Hospital Reviews on Dianping Website in Shanghai, China: Empirical Study

Author:

Huo WeixueORCID,He MengweiORCID,Zeng ZhaoxiangORCID,Bao XianhaoORCID,Lu YeORCID,Tian WenORCID,Feng JiaxuanORCID,Feng RuiORCID

Abstract

Background In the era of the internet, individuals have increasingly accustomed themselves to gathering necessary information and expressing their opinions on public web-based platforms. The health care sector is no exception, as these comments, to a certain extent, influence people’s health care decisions. During the onset of the COVID-19 pandemic, how the medical experience of Chinese patients and their evaluations of hospitals have changed remains to be studied. Therefore, we plan to collect patient medical visit data from the internet to reflect the current status of medical relationships under specific circumstances. Objective This study aims to explore the differences in patient comments across various stages (during, before, and after) of the COVID-19 pandemic, as well as among different types of hospitals (children’s hospitals, maternity hospitals, and tumor hospitals). Additionally, by leveraging ChatGPT (OpenAI), the study categorizes the elements of negative hospital evaluations. An analysis is conducted on the acquired data, and potential solutions that could improve patient satisfaction are proposed. This study is intended to assist hospital managers in providing a better experience for patients who are seeking care amid an emergent public health crisis. Methods Selecting the top 50 comprehensive hospitals nationwide and the top specialized hospitals (children’s hospitals, tumor hospitals, and maternity hospitals), we collected patient reviews from these hospitals on the Dianping website. Using ChatGPT, we classified the content of negative reviews. Additionally, we conducted statistical analysis using SPSS (IBM Corp) to examine the scoring and composition of negative evaluations. Results A total of 30,317 pieces of effective comment information were collected from January 1, 2018, to August 15, 2023, including 7696 pieces of negative comment information. Manual inspection results indicated that ChatGPT had an accuracy rate of 92.05%. The F1-score was 0.914. The analysis of this data revealed a significant correlation between the comments and ratings received by hospitals during the pandemic. Overall, there was a significant increase in average comment scores during the outbreak (P<.001). Furthermore, there were notable differences in the composition of negative comments among different types of hospitals (P<.001). Children’s hospitals received sensitive feedback regarding waiting times and treatment effectiveness, while patients at maternity hospitals showed a greater concern for the attitude of health care providers. Patients at tumor hospitals expressed a desire for timely examinations and treatments, especially during the pandemic period. Conclusions The COVID-19 pandemic had some association with patient comment scores. There were variations in the scores and content of comments among different types of specialized hospitals. Using ChatGPT to analyze patient comment content represents an innovative approach for statistically assessing factors contributing to patient dissatisfaction. The findings of this study could provide valuable insights for hospital administrators to foster more harmonious physician-patient relationships and enhance hospital performance during public health emergencies.

Publisher

JMIR Publications Inc.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3