Differing Behaviors Around Adult Nonmedical Use of Prescription Stimulants and Opioids: Latent Class Analysis

Author:

Rockhill Karilynn MORCID,Olson RichardORCID,Dart Richard CORCID,Iwanicki Janetta LORCID,Black Joshua CORCID

Abstract

Background The availability of central nervous system stimulants has risen in recent years, along with increased dispensing of stimulants for treatment of, for example, parent-reported attention-deficit/hyperactivity disorder in children and new diagnoses during adulthood. Typologies of drug use, as has been done with opioids, fail to include a sufficient range of behavioral factors to contextualize person-centric circumstances surrounding drug use. Understanding these patterns across drug classes would bring public health and regulatory practices toward precision public health. Objective The objective of this study was to quantitatively delineate the unique behavioral profiles of adults who currently nonmedically use stimulants and opioids using a latent class analysis and to contrast the differences in findings by class. We further evaluated whether the subgroups identified were associated with an increased Drug Abuse Screening Test-10 (DAST-10) score, which is an indicator of average problematic drug use. Methods This study used a national cross-sectional web-based survey, using 3 survey launches from 2019 to 2020 (before the COVID-19 pandemic). Data from adults who reported nonmedical use of prescription stimulants (n=2083) or prescription opioids (n=6127) in the last 12 months were analyzed. A weighted latent class analysis was used to identify the patterns of use. Drug types, motivations, and behaviors were factors in the model, which characterized unique classes of behavior. Results Five stimulant nonmedical use classes were identified: amphetamine self-medication, network-sourced stimulant for alertness, nonamphetamine performance use, recreational use, and nondiscriminatory behaviors. The drug used nonmedically, acquisition through a friend or family member, and use to get high were strong differentiators among the stimulant classes. The latter 4 classes had significantly higher DAST-10 scores than amphetamine self-medication (P<.001). In addition, 4 opioid nonmedical use classes were identified: moderate pain with low mental health burden, high pain with higher mental health burden, risky behaviors with diverse motivations, and nondiscriminatory behaviors. There was a progressive and significant increase in DAST-10 scores across classes (P<.001). The potency of the opioid, pain history, the routes of administration, and psychoactive effect behaviors were strong differentiators among the opioid classes. Conclusions A more precise understanding of how behaviors tend to co-occur would improve efficacy and efficiency in developing interventions and supporting the overall health of those who use drugs, and it would improve communication with, and connection to, those at risk for severe drug outcomes.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3