Predicting Participation Willingness in Ecological Momentary Assessment of General Population Health and Behavior: Machine Learning Study

Author:

Murray AjaORCID,Ushakova AnastasiaORCID,Zhu XinxinORCID,Yang YiORCID,Xiao ZhuoniORCID,Brown RuthORCID,Speyer LydiaORCID,Ribeaud DenisORCID,Eisner ManuelORCID

Abstract

Background Ecological momentary assessment (EMA) is widely used in health research to capture individuals’ experiences in the flow of daily life. The majority of EMA studies, however, rely on nonprobability sampling approaches, leaving open the possibility of nonrandom participation concerning the individual characteristics of interest in EMA research. Knowledge of the factors that predict participation in EMA research is required to evaluate this possibility and can also inform optimal recruitment strategies. Objective This study aimed to examine the extent to which being willing to participate in EMA research is related to respondent characteristics and to identify the most critical predictors of participation. Methods We leveraged the availability of comprehensive data on a general young adult population pool of potential EMA participants and used and compared logistic regression, classification and regression trees, and random forest approaches to evaluate respondents’ characteristic predictors of willingness to participate in the Decades-to-Minutes EMA study. Results In unadjusted logistic regression models, gender, migration background, anxiety, attention deficit hyperactivity disorder symptoms, stress, and prosociality were significant predictors of participation willingness; in logistic regression models, mutually adjusting for all predictors, migration background, tobacco use, and social exclusion were significant predictors. Tree-based approaches also identified migration status, tobacco use, and prosociality as prominent predictors. However, overall, willingness to participate in the Decades-to-Minutes EMA study was only weakly predictable from respondent characteristics. Cross-validation areas under the curve for the best models were only in the range of 0.56 to 0.57. Conclusions Results suggest that migration background is the single most promising target for improving EMA participation and sample representativeness; however, more research is needed to improve prediction of participation in EMA studies in health.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3