Effects of Using Different Indirect Techniques on the Calculation of Reference Intervals: Observational Study

Author:

Yang DanORCID,Su ZihanORCID,Mu RunqingORCID,Diao YingyingORCID,Zhang XinORCID,Liu YusiORCID,Wang ShuoORCID,Wang XuORCID,Zhao LeiORCID,Wang HongyiORCID,Zhao MinORCID

Abstract

Background Reference intervals (RIs) play an important role in clinical decision-making. However, due to the time, labor, and financial costs involved in establishing RIs using direct means, the use of indirect methods, based on big data previously obtained from clinical laboratories, is getting increasing attention. Different indirect techniques combined with different data transformation methods and outlier removal might cause differences in the calculation of RIs. However, there are few systematic evaluations of this. Objective This study used data derived from direct methods as reference standards and evaluated the accuracy of combinations of different data transformation, outlier removal, and indirect techniques in establishing complete blood count (CBC) RIs for large-scale data. Methods The CBC data of populations aged ≥18 years undergoing physical examination from January 2010 to December 2011 were retrieved from the First Affiliated Hospital of China Medical University in northern China. After exclusion of repeated individuals, we performed parametric, nonparametric, Hoffmann, Bhattacharya, and truncation points and Kolmogorov–Smirnov distance (kosmic) indirect methods, combined with log or BoxCox transformation, and Reed–Dixon, Tukey, and iterative mean (3SD) outlier removal methods in order to derive the RIs of 8 CBC parameters and compared the results with those directly and previously established. Furthermore, bias ratios (BRs) were calculated to assess which combination of indirect technique, data transformation pattern, and outlier removal method is preferrable. Results Raw data showed that the degrees of skewness of the white blood cell (WBC) count, platelet (PLT) count, mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), and mean corpuscular volume (MCV) were much more obvious than those of other CBC parameters. After log or BoxCox transformation combined with Tukey or iterative mean (3SD) processing, the distribution types of these data were close to Gaussian distribution. Tukey-based outlier removal yielded the maximum number of outliers. The lower-limit bias of WBC (male), PLT (male), hemoglobin (HGB; male), MCH (male/female), and MCV (female) was greater than that of the corresponding upper limit for more than half of 30 indirect methods. Computational indirect choices of CBC parameters for males and females were inconsistent. The RIs of MCHC established by the direct method for females were narrow. For this, the kosmic method was markedly superior, which contrasted with the RI calculation of CBC parameters with high |BR| qualification rates for males. Among the top 10 methodologies for the WBC count, PLT count, HGB, MCV, and MCHC with a high-BR qualification rate among males, the Bhattacharya, Hoffmann, and parametric methods were superior to the other 2 indirect methods. Conclusions Compared to results derived by the direct method, outlier removal methods and indirect techniques markedly influence the final RIs, whereas data transformation has negligible effects, except for obviously skewed data. Specifically, the outlier removal efficiency of Tukey and iterative mean (3SD) methods is almost equivalent. Furthermore, the choice of indirect techniques depends more on the characteristics of the studied analyte itself. This study provides scientific evidence for clinical laboratories to use their previous data sets to establish RIs.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3