Accurate Modeling of Ejection Fraction and Stroke Volume With Mobile Phone Auscultation: Prospective Case-Control Study

Author:

Huecker MartinORCID,Schutzman CraigORCID,French JoshuaORCID,El-Kersh KarimORCID,Ghafghazi ShahabORCID,Desai RaviORCID,Frick DanielORCID,Thomas Jarred JeremyORCID

Abstract

Background Heart failure (HF) contributes greatly to morbidity, mortality, and health care costs worldwide. Hospital readmission rates are tracked closely and determine federal reimbursement dollars. No current modality or technology allows for accurate measurement of relevant HF parameters in ambulatory, rural, or underserved settings. This limits the use of telehealth to diagnose or monitor HF in ambulatory patients. Objective This study describes a novel HF diagnostic technology using audio recordings from a standard mobile phone. Methods This prospective study of acoustic microphone recordings enrolled convenience samples of patients from 2 different clinical sites in 2 separate areas of the United States. Recordings were obtained at the aortic (second intercostal) site with the patient sitting upright. The team used recordings to create predictive algorithms using physics-based (not neural networks) models. The analysis matched mobile phone acoustic data to ejection fraction (EF) and stroke volume (SV) as evaluated by echocardiograms. Using the physics-based approach to determine features eliminates the need for neural networks and overfitting strategies entirely, potentially offering advantages in data efficiency, model stability, regulatory visibility, and physical insightfulness. Results Recordings were obtained from 113 participants. No recordings were excluded due to background noise or for any other reason. Participants had diverse racial backgrounds and body surface areas. Reliable echocardiogram data were available for EF from 113 patients and for SV from 65 patients. The mean age of the EF cohort was 66.3 (SD 13.3) years, with female patients comprising 38.3% (43/113) of the group. Using an EF cutoff of ≤40% versus >40%, the model (using 4 features) had an area under the receiver operating curve (AUROC) of 0.955, sensitivity of 0.952, specificity of 0.958, and accuracy of 0.956. The mean age of the SV cohort was 65.5 (SD 12.7) years, with female patients comprising 34% (38/65) of the group. Using a clinically relevant SV cutoff of <50 mL versus >50 mL, the model (using 3 features) had an AUROC of 0.922, sensitivity of 1.000, specificity of 0.844, and accuracy of 0.923. Acoustics frequencies associated with SV were observed to be higher than those associated with EF and, therefore, were less likely to pass through the tissue without distortion. Conclusions This work describes the use of mobile phone auscultation recordings obtained with unaltered cellular microphones. The analysis reproduced the estimates of EF and SV with impressive accuracy. This technology will be further developed into a mobile app that could bring screening and monitoring of HF to several clinical settings, such as home or telehealth, rural, remote, and underserved areas across the globe. This would bring high-quality diagnostic methods to patients with HF using equipment they already own and in situations where no other diagnostic and monitoring options exist.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3