Impact of Audio Data Compression on Feature Extraction for Vocal Biomarker Detection: Validation Study

Author:

Oreskovic JessicaORCID,Kaufman JayceeORCID,Fossat YanORCID

Abstract

Background Vocal biomarkers, derived from acoustic analysis of vocal characteristics, offer noninvasive avenues for medical screening, diagnostics, and monitoring. Previous research demonstrated the feasibility of predicting type 2 diabetes mellitus through acoustic analysis of smartphone-recorded speech. Building upon this work, this study explores the impact of audio data compression on acoustic vocal biomarker development, which is critical for broader applicability in health care. Objective The objective of this research is to analyze how common audio compression algorithms (MP3, M4A, and WMA) applied by 3 different conversion tools at 2 bitrates affect features crucial for vocal biomarker detection. Methods The impact of audio data compression on acoustic vocal biomarker development was investigated using uncompressed voice samples converted into MP3, M4A, and WMA formats at 2 bitrates (320 and 128 kbps) with MediaHuman (MH) Audio Converter, WonderShare (WS) UniConverter, and Fast Forward Moving Picture Experts Group (FFmpeg). The data set comprised recordings from 505 participants, totaling 17,298 audio files, collected using a smartphone. Participants recorded a fixed English sentence up to 6 times daily for up to 14 days. Feature extraction, including pitch, jitter, intensity, and Mel-frequency cepstral coefficients (MFCCs), was conducted using Python and Parselmouth. The Wilcoxon signed rank test and the Bonferroni correction for multiple comparisons were used for statistical analysis. Results In this study, 36,970 audio files were initially recorded from 505 participants, with 17,298 recordings meeting the fixed sentence criteria after screening. Differences between the audio conversion software, MH, WS, and FFmpeg, were notable, impacting compression outcomes such as constant or variable bitrates. Analysis encompassed diverse data compression formats and a wide array of voice features and MFCCs. Wilcoxon signed rank tests yielded P values, with those below the Bonferroni-corrected significance level indicating significant alterations due to compression. The results indicated feature-specific impacts of compression across formats and bitrates. MH-converted files exhibited greater resilience compared to WS-converted files. Bitrate also influenced feature stability, with 38 cases affected uniquely by a single bitrate. Notably, voice features showed greater stability than MFCCs across conversion methods. Conclusions Compression effects were found to be feature specific, with MH and FFmpeg showing greater resilience. Some features were consistently affected, emphasizing the importance of understanding feature resilience for diagnostic applications. Considering the implementation of vocal biomarkers in health care, finding features that remain consistent through compression for data storage or transmission purposes is valuable. Focused on specific features and formats, future research could broaden the scope to include diverse features, real-time compression algorithms, and various recording methods. This study enhances our understanding of audio compression’s influence on voice features and MFCCs, providing insights for developing applications across fields. The research underscores the significance of feature stability in working with compressed audio data, laying a foundation for informed voice data use in evolving technological landscapes.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3