An Effective Deep Learning Framework for Fall Detection: Model Development and Study Design

Author:

Zhang JinxiORCID,Li ZhenORCID,Liu YuORCID,Li JianORCID,Qiu HualongORCID,Li MohanORCID,Hou GuohuiORCID,Zhou ZhixiongORCID

Abstract

Background Fall detection is of great significance in safeguarding human health. By monitoring the motion data, a fall detection system (FDS) can detect a fall accident. Recently, wearable sensors–based FDSs have become the mainstream of research, which can be categorized into threshold-based FDSs using experience, machine learning–based FDSs using manual feature extraction, and deep learning (DL)–based FDSs using automatic feature extraction. However, most FDSs focus on the global information of sensor data, neglecting the fact that different segments of the data contribute variably to fall detection. This shortcoming makes it challenging for FDSs to accurately distinguish between similar human motion patterns of actual falls and fall-like actions, leading to a decrease in detection accuracy. Objective This study aims to develop and validate a DL framework to accurately detect falls using acceleration and gyroscope data from wearable sensors. We aim to explore the essential contributing features extracted from sensor data to distinguish falls from activities of daily life. The significance of this study lies in reforming the FDS by designing a weighted feature representation using DL methods to effectively differentiate between fall events and fall-like activities. Methods Based on the 3-axis acceleration and gyroscope data, we proposed a new DL architecture, the dual-stream convolutional neural network self-attention (DSCS) model. Unlike previous studies, the used architecture can extract global feature information from acceleration and gyroscope data. Additionally, we incorporated a self-attention module to assign different weights to the original feature vector, enabling the model to learn the contribution effect of the sensor data and enhance classification accuracy. The proposed model was trained and tested on 2 public data sets: SisFall and MobiFall. In addition, 10 participants were recruited to carry out practical validation of the DSCS model. A total of 1700 trials were performed to test the generalization ability of the model. Results The fall detection accuracy of the DSCS model was 99.32% (recall=99.15%; precision=98.58%) and 99.65% (recall=100%; precision=98.39%) on the test sets of SisFall and MobiFall, respectively. In the ablation experiment, we compared the DSCS model with state-of-the-art machine learning and DL models. On the SisFall data set, the DSCS model achieved the second-best accuracy; on the MobiFall data set, the DSCS model achieved the best accuracy, recall, and precision. In practical validation, the accuracy of the DSCS model was 96.41% (recall=95.12%; specificity=97.55%). Conclusions This study demonstrates that the DSCS model can significantly improve the accuracy of fall detection on 2 publicly available data sets and performs robustly in practical validation.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3