Diagnosis of Type 2 Diabetes Using Electrogastrograms: Extraction and Genetic Algorithm–Based Selection of Informative Features

Author:

Alagumariappan ParamasivamORCID,Krishnamurthy KamalanandORCID,Kandiah SundravadiveluORCID,Cyril EmmanuelORCID,V RajinikanthORCID

Abstract

Background Electrogastrography is a noninvasive electrophysiological procedure used to measure gastric myoelectrical activity. EGG methods have been used to investigate the mechanisms of the human digestive system and as a clinical tool. Abnormalities in gastric myoelectrical activity have been observed in subjects with diabetes. Objective The objective of this study was to use the electrogastrograms (EGGs) from healthy individuals and subjects with diabetes to identify potentially informative features for the diagnosis of diabetes using EGG signals. Methods A total of 30 features were extracted from the EGGs of 30 healthy individuals and 30 subjects with diabetes. Of these, 20 potentially informative features were selected using a genetic algorithm–based feature selection process. The selected features were analyzed for further classification of EGG signals from healthy individuals and subjects with diabetes. Results This study demonstrates that there are distinct variations between the EGG signals recorded from healthy individuals and those from subjects with diabetes. Furthermore, the study reveals that the features Maragos fractal dimension and Hausdorff box-counting fractal dimension have a high degree of correlation with the mobility of EGGs from healthy individuals and subjects with diabetes. Conclusions Based on the analysis on the extracted features, the selected features are suitable for the design of automated classification systems to identify healthy individuals and subjects with diabetes.

Publisher

JMIR Publications Inc.

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3