Abstract
Background
Electrogastrography is a noninvasive electrophysiological procedure used to measure gastric myoelectrical activity. EGG methods have been used to investigate the mechanisms of the human digestive system and as a clinical tool. Abnormalities in gastric myoelectrical activity have been observed in subjects with diabetes.
Objective
The objective of this study was to use the electrogastrograms (EGGs) from healthy individuals and subjects with diabetes to identify potentially informative features for the diagnosis of diabetes using EGG signals.
Methods
A total of 30 features were extracted from the EGGs of 30 healthy individuals and 30 subjects with diabetes. Of these, 20 potentially informative features were selected using a genetic algorithm–based feature selection process. The selected features were analyzed for further classification of EGG signals from healthy individuals and subjects with diabetes.
Results
This study demonstrates that there are distinct variations between the EGG signals recorded from healthy individuals and those from subjects with diabetes. Furthermore, the study reveals that the features Maragos fractal dimension and Hausdorff box-counting fractal dimension have a high degree of correlation with the mobility of EGGs from healthy individuals and subjects with diabetes.
Conclusions
Based on the analysis on the extracted features, the selected features are suitable for the design of automated classification systems to identify healthy individuals and subjects with diabetes.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献