Machine Learning for Risk Group Identification and User Data Collection in a Herpes Simplex Virus Patient Registry: Algorithm Development and Validation Study

Author:

Surodina SvitlanaORCID,Lam ChingORCID,Grbich SvetislavORCID,Milne-Ives MadisonORCID,van Velthoven MichelleORCID,Meinert EdwardORCID

Abstract

Background Researching people with herpes simplex virus (HSV) is challenging because of poor data quality, low user engagement, and concerns around stigma and anonymity. Objective This project aimed to improve data collection for a real-world HSV registry by identifying predictors of HSV infection and selecting a limited number of relevant questions to ask new registry users to determine their level of HSV infection risk. Methods The US National Health and Nutrition Examination Survey (NHANES, 2015-2016) database includes the confirmed HSV type 1 and type 2 (HSV-1 and HSV-2, respectively) status of American participants (14-49 years) and a wealth of demographic and health-related data. The questionnaires and data sets from this survey were used to form two data sets: one for HSV-1 and one for HSV-2. These data sets were used to train and test a model that used a random forest algorithm (devised using Python) to minimize the number of anonymous lifestyle-based questions needed to identify risk groups for HSV. Results The model selected a reduced number of questions from the NHANES questionnaire that predicted HSV infection risk with high accuracy scores of 0.91 and 0.96 and high recall scores of 0.88 and 0.98 for the HSV-1 and HSV-2 data sets, respectively. The number of questions was reduced from 150 to an average of 40, depending on age and gender. The model, therefore, provided high predictability of risk of infection with minimal required input. Conclusions This machine learning algorithm can be used in a real-world evidence registry to collect relevant lifestyle data and identify individuals’ levels of risk of HSV infection. A limitation is the absence of real user data and integration with electronic medical records, which would enable model learning and improvement. Future work will explore model adjustments, anonymization options, explicit permissions, and a standardized data schema that meet the General Data Protection Regulation, Health Insurance Portability and Accountability Act, and third-party interface connectivity requirements.

Publisher

JMIR Publications Inc.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3