Novel Strategy to Assess the Neurotoxicity of Organic Solvents Such as Glycol Ethers: Protocol for Combining In Vitro and In Silico Methods With Human-Controlled Exposure Experiments

Author:

Hopf Nancy BORCID,Suter-Dick LauraORCID,Huwyler JörgORCID,Borgatta MyriamORCID,Hegg LucieORCID,Pamies DavidORCID,Paschoud HélèneORCID,Puligilla Ramya DeepthiORCID,Reale ElenaORCID,Werner SophieORCID,Zurich Marie-GabrielleORCID

Abstract

Background Chemicals are not required to be tested systematically for their neurotoxic potency, although they may contribute to the development of several neurological diseases. The absence of systematic testing may be partially explained by the current Organisation for Economic Co-operation and Development (OECD) Test Guidelines, which rely on animal experiments that are expensive, laborious, and ethically debatable. Therefore, it is important to understand the risks to exposed workers and the general population exposed to domestic products. In this study, we propose a strategy to test the neurotoxicity of solvents using the commonly used glycol ethers as a case study. Objective This study aims to provide a strategy that can be used by regulatory agencies and industries to rank solvents according to their neurotoxicity and demonstrate the use of toxicokinetic modeling to predict air concentrations of solvents that are below the no observed adverse effect concentrations (NOAECs) for human neurotoxicity determined in in vitro assays. Methods The proposed strategy focuses on a complex 3D in vitro brain model (BrainSpheres) derived from human-induced pluripotent stem cells (hiPSCs). This model is accompanied by in vivo, in vitro, and in silico models for the blood-brain barrier (BBB) and in vitro models for liver metabolism. The data are integrated into a toxicokinetic model. Internal concentrations predicted using this toxicokinetic model are compared with the results from in vivo human-controlled exposure experiments for model validation. The toxicokinetic model is then used in reverse dosimetry to predict air concentrations, leading to brain concentrations lower than the NOAECs determined in the hiPSC-derived 3D brain model. These predictions will contribute to the protection of exposed workers and the general population with domestic exposures. Results The Swiss Centre for Applied Human Toxicology funded the project, commencing in January 2021. The Human Ethics Committee approval was obtained on November 16, 2022. Zebrafish experiments and in vitro methods started in February 2021, whereas recruitment of human volunteers started in 2022 after the COVID-19 pandemic–related restrictions were lifted. We anticipate that we will be able to provide a neurotoxicity testing strategy by 2026 and predicted air concentrations for 6 commonly used propylene glycol ethers based on toxicokinetic models incorporating liver metabolism, BBB leakage parameters, and brain toxicity. Conclusions This study will be of great interest to regulatory agencies and chemical industries needing and seeking novel solutions to develop human chemical risk assessments. It will contribute to protecting human health from the deleterious effects of environmental chemicals. International Registered Report Identifier (IRRID) DERR1-10.2196/50300

Publisher

JMIR Publications Inc.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3