A Roadmap for Using Causal Inference and Machine Learning to Personalize Asthma Medication Selection

Author:

Nkoy Flory LORCID,Stone Bryan LORCID,Zhang YueORCID,Luo GangORCID

Abstract

Inhaled corticosteroid (ICS) is a mainstay treatment for controlling asthma and preventing exacerbations in patients with persistent asthma. Many types of ICS drugs are used, either alone or in combination with other controller medications. Despite the widespread use of ICSs, asthma control remains suboptimal in many people with asthma. Suboptimal control leads to recurrent exacerbations, causes frequent ER visits and inpatient stays, and is due to multiple factors. One such factor is the inappropriate ICS choice for the patient. While many interventions targeting other factors exist, less attention is given to inappropriate ICS choice. Asthma is a heterogeneous disease with variable underlying inflammations and biomarkers. Up to 50% of people with asthma exhibit some degree of resistance or insensitivity to certain ICSs due to genetic variations in ICS metabolizing enzymes, leading to variable responses to ICSs. Yet, ICS choice, especially in the primary care setting, is often not tailored to the patient’s characteristics. Instead, ICS choice is largely by trial and error and often dictated by insurance reimbursement, organizational prescribing policies, or cost, leading to a one-size-fits-all approach with many patients not achieving optimal control. There is a pressing need for a decision support tool that can predict an effective ICS at the point of care and guide providers to select the ICS that will most likely and quickly ease patient symptoms and improve asthma control. To date, no such tool exists. Predicting which patient will respond well to which ICS is the first step toward developing such a tool. However, no study has predicted ICS response, forming a gap. While the biologic heterogeneity of asthma is vast, few, if any, biomarkers and genotypes can be used to systematically profile all patients with asthma and predict ICS response. As endotyping or genotyping all patients is infeasible, readily available electronic health record data collected during clinical care offer a low-cost, reliable, and more holistic way to profile all patients. In this paper, we point out the need for developing a decision support tool to guide ICS selection and the gap in fulfilling the need. Then we outline an approach to close this gap via creating a machine learning model and applying causal inference to predict a patient’s ICS response in the next year based on the patient’s characteristics. The model uses electronic health record data to characterize all patients and extract patterns that could mirror endotype or genotype. This paper supplies a roadmap for future research, with the eventual goal of shifting asthma care from one-size-fits-all to personalized care, improve outcomes, and save health care resources.

Publisher

JMIR Publications Inc.

Reference123 articles.

1. Most recent national asthma dataCenters for Disease Control and Prevention20232024-01-22https://www.cdc.gov/asthma/most_recent_national_asthma_data.htm

2. The Economic Burden of Asthma in the United States, 2008–2013

3. Inhaled corticosteroidsAmerican Academy of Allergy, Asthma & Immunology20232024-01-22https://www.aaaai.org/tools-for-the-public/drug-guide/inhaled-corticosteroids

4. Asthma severity among children with current asthmaCenters for Disease Control and Prevention20232024-01-22https://archive.cdc.gov/#/details?url=https://www.cdc.gov/asthma/asthma_stats/severity_child.htm

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3