Evaluating the Capabilities of Generative AI Tools in Understanding Medical Papers: Qualitative Study

Author:

Akyon Seyma HandanORCID,Akyon Fatih CagatayORCID,Camyar Ahmet SefaORCID,Hızlı FatihORCID,Sari TalhaORCID,Hızlı ŞamilORCID

Abstract

Background Reading medical papers is a challenging and time-consuming task for doctors, especially when the papers are long and complex. A tool that can help doctors efficiently process and understand medical papers is needed. Objective This study aims to critically assess and compare the comprehension capabilities of large language models (LLMs) in accurately and efficiently understanding medical research papers using the STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) checklist, which provides a standardized framework for evaluating key elements of observational study. Methods The study is a methodological type of research. The study aims to evaluate the understanding capabilities of new generative artificial intelligence tools in medical papers. A novel benchmark pipeline processed 50 medical research papers from PubMed, comparing the answers of 6 LLMs (GPT-3.5-Turbo, GPT-4-0613, GPT-4-1106, PaLM 2, Claude v1, and Gemini Pro) to the benchmark established by expert medical professors. Fifteen questions, derived from the STROBE checklist, assessed LLMs’ understanding of different sections of a research paper. Results LLMs exhibited varying performance, with GPT-3.5-Turbo achieving the highest percentage of correct answers (n=3916, 66.9%), followed by GPT-4-1106 (n=3837, 65.6%), PaLM 2 (n=3632, 62.1%), Claude v1 (n=2887, 58.3%), Gemini Pro (n=2878, 49.2%), and GPT-4-0613 (n=2580, 44.1%). Statistical analysis revealed statistically significant differences between LLMs (P<.001), with older models showing inconsistent performance compared to newer versions. LLMs showcased distinct performances for each question across different parts of a scholarly paper—with certain models like PaLM 2 and GPT-3.5 showing remarkable versatility and depth in understanding. Conclusions This study is the first to evaluate the performance of different LLMs in understanding medical papers using the retrieval augmented generation method. The findings highlight the potential of LLMs to enhance medical research by improving efficiency and facilitating evidence-based decision-making. Further research is needed to address limitations such as the influence of question formats, potential biases, and the rapid evolution of LLM models.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3