Integrating Physiological Data Artifacts Detection With Clinical Decision Support Systems: Observational Study

Author:

Nizami ShermeenORCID,McGregor AM CarolynORCID,Green James RobertORCID

Abstract

Background Clinical decision support systems (CDSS) have the potential to lower the patient mortality and morbidity rates. However, signal artifacts present in physiological data affect the reliability and accuracy of the CDSS. Moreover, patient monitors and other medical devices generate false alarms while processing physiological data, further leading to alarm fatigue because of increased noise levels, staff disruption, and staff desensitization in busy critical care environments. This adversely affects the quality of care at the patient bedside. Hence, artifact detection (AD) algorithms play a crucial role in assessing the quality of physiological data and mitigating the impact of these artifacts. Objective The aim of this study is to evaluate a novel AD framework for integrating AD algorithms with CDSS. We designed the framework with features that support real-time implementation within critical care. In this study, we evaluated the framework and its features in a false alarm reduction study. We developed static framework component models, followed by dynamic framework compositions to formulate four CDSS. We evaluated these formulations using neonatal patient data and validated the six framework features: flexibility, reusability, signal quality indicator standardization, scalability, customizability, and real-time implementation support. Methods We developed four exemplar static AD components with standardized requirements and provisions interfaces that facilitate the interoperability of framework components. These AD components were mixed and matched into four different AD compositions to mitigate the artifacts’ effects. We developed a novel static clinical event detection component that is integrated with each AD composition to formulate and evaluate a dynamic CDSS for peripheral oxygen saturation (SpO2) alarm generation. This study collected data from 11 patients with diverse pathologies in the neonatal intensive care unit. Collected data streams and corresponding alarms include pulse rate and SpO2 measured from a pulse oximeter (Masimo SET SmartPod) integrated with an Infinity Delta monitor and the heart rate derived from electrocardiography leads attached to a second Infinity Delta monitor. Results A total of 119 SpO2 alarms were evaluated. The lowest achievable SpO2 false alarm rate was 39%, with a sensitivity of 80%. This demonstrates the framework’s utility in identifying the best possible dynamic composition to serve the clinical need for false SpO2 alarm reduction and subsequent alarm fatigue, given the limitations of a small sample size. Conclusions The framework features, including reusability, signal quality indicator standardization, scalability, and customizability, allow the evaluation and comparison of novel CDSS formulations. The optimal solution for a CDSS can then be hard-coded and integrated within clinical workflows for real-time implementation. The flexibility to serve different clinical needs and standardized component interoperability of the framework supports the potential for a real-time clinical implementation of AD.

Publisher

JMIR Publications Inc.

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Clinical decision support in the neonatal ICU;Seminars in Fetal and Neonatal Medicine;2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3