Communicating Treatment-Related Symptoms Using Passively Collected Data and Satisfaction/Loyalty Ratings: Exploratory Study

Author:

Kudel IanORCID,Perry ToniORCID

Abstract

Background Electronic patient-reported outcomes’ real time communication of treatment-related symptoms is increasingly associated with better outcomes including longer survival and less health care resource use, but the primary method of collecting this information, static questionnaires, has not evolved. Objective The aim of this paper is to describe the use of Noona’s three methods of communicating treatment-related symptoms, which are as follows: (1) Noona symptom questionnaires (NSQ), which incorporate branching logic; (2) a diary; and (3) secure messaging, the last two of which have NSQ reporting functionality. It also aims to explore, using multivariable analyses, whether patients find value using these features. Methods Noona users (N=1081) who have an active account for more than 30 days, who responded to the satisfaction/loyalty item, and who were undergoing active cancer treatment (systemic or radiotherapy) in the United States were included in this study. All study data were collected via software embedded within Noona code. This includes metadata, patient activities (measured in clicks), and responses to a satisfaction/loyalty question (“How likely are you to recommend Noona to another patient”) displayed on the Noona home page. Results Noona users expressed a high degree of satisfaction/loyalty when asked to rate how likely they would recommend Noona to another patient. Multivariable analyses indicate small but significant effects for some of the analyses. Use of NSQs were significantly related to satisfaction/loyalty, users of NSQs had significantly higher satisfaction/loyalty than those who did not use any, and secure communication use was significantly higher for those who rated the app highly compared to those who did not. These relationships will likely be further explicated with the use of satisfaction/loyalty questions that focus specifically on feature use. Conclusions Noona is well liked by respondents, and exploratory multivariable analyses demonstrate the potential for using passively and minimally invasive data to demonstrate value.

Publisher

JMIR Publications Inc.

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3