Accuracy of an Artificial Intelligence–Based Model for Estimating Leftover Liquid Food in Hospitals: Validation Study

Author:

Tagi MasatoORCID,Tajiri MariORCID,Hamada YasuhiroORCID,Wakata YoshifumiORCID,Shan XiaoORCID,Ozaki KazumiORCID,Kubota MasanoriORCID,Amano SosukeORCID,Sakaue HiroshiORCID,Suzuki YoshikoORCID,Hirose JunORCID

Abstract

Background An accurate evaluation of the nutritional status of malnourished hospitalized patients at a higher risk of complications, such as frailty or disability, is crucial. Visual methods of estimating food intake are popular for evaluating the nutritional status in clinical environments. However, from the perspective of accurate measurement, such methods are unreliable. Objective The accuracy of estimating leftover liquid food in hospitals using an artificial intelligence (AI)–based model was compared to that of visual estimation. Methods The accuracy of the AI-based model (AI estimation) was compared to that of the visual estimation method for thin rice gruel as staple food and fermented milk and peach juice as side dishes. A total of 576 images of liquid food (432 images of thin rice gruel, 72 of fermented milk, and 72 of peach juice) were used. The mean absolute error, root mean squared error, and coefficient of determination (R2) were used as metrics for determining the accuracy of the evaluation process. Welch t test and the confusion matrix were used to examine the difference of mean absolute error between AI and visual estimation. Results The mean absolute errors obtained through the AI estimation approach were 0.63 for fermented milk, 0.25 for peach juice, and 0.85 for the total. These were significantly smaller than those obtained using the visual estimation approach, which were 1.40 (P<.001) for fermented milk, 0.90 (P<.001) for peach juice, and 1.03 (P=.009) for the total. By contrast, the mean absolute error for thin rice gruel obtained using the AI estimation method (0.99) did not differ significantly from that obtained using visual estimation (0.99). The confusion matrix for thin rice gruel showed variation in the distribution of errors, indicating that the errors in the AI estimation were biased toward the case of many leftovers. The mean squared error for all liquid foods tended to be smaller for the AI estimation than for the visual estimation. Additionally, the coefficient of determination (R2) for fermented milk and peach juice tended to be larger for the AI estimation than for the visual estimation, and the R2 value for the total was equal in terms of accuracy between the AI and visual estimations. Conclusions The AI estimation approach achieved a smaller mean absolute error and root mean squared error and a larger coefficient of determination (R2) than the visual estimation approach for the side dishes. Additionally, the AI estimation approach achieved a smaller mean absolute error and root mean squared error compared to the visual estimation method, and the coefficient of determination (R2) was similar to that of the visual estimation method for the total. AI estimation measures liquid food intake in hospitals more precisely than visual estimation, but its accuracy in estimating staple food leftovers requires improvement.

Publisher

JMIR Publications Inc.

Subject

Computer Science Applications,Health Informatics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3