Electromyography-Driven Exergaming in Wheelchairs on a Mobile Platform: Bench and Pilot Testing of the WOW-Mobile Fitness System

Author:

Enciso JamesORCID,Variya DhruvalORCID,Sunthonlap JamesORCID,Sarmiento TerrenceORCID,Lee Ka MunORCID,Velasco JamesORCID,Pebdani Roxanna NORCID,de Leon Ray DORCID,Dy ChristineORCID,Keslacy StefanORCID,Won Deborah SoonmeeORCID

Abstract

Background Implementing exercises in the form of video games, otherwise known as exergaming, has gained recent attention as a way to combat health issues resulting from sedentary lifestyles. However, these exergaming apps have not been developed for exercises that can be performed in wheelchairs, and they tend to rely on whole-body movements. Objective This study aims to develop a mobile phone app that implements electromyography (EMG)-driven exergaming, to test the feasibility of using this app to enable people in wheelchairs to perform exergames independently and flexibly in their own home, and to assess the perceived usefulness and usability of this mobile health system. Methods We developed an Android mobile phone app (Workout on Wheels, WOW-Mobile) that senses upper limb muscle activity (EMG) from wireless body-worn sensors to drive 3 different video games that implement upper limb exercises designed for people in wheelchairs. Cloud server recordings of EMG enabled long-term monitoring and feedback as well as multiplayer gaming. Bench testing of data transmission and power consumption were tested. Pilot testing was conducted on 4 individuals with spinal cord injury. Each had a WOW-Mobile system at home for 8 weeks. We measured the minutes for which the app was used and the exergames were played, and we integrated EMG as a measure of energy expended. We also conducted a perceived usefulness and usability questionnaire. Results Bench test results revealed that the app meets performance specifications to enable real-time gaming, cloud storage of data, and live cloud server transmission for multiplayer gaming. The EMG sampling rate of 64 samples per second, in combination with zero-loss data communication with the cloud server within a 10-m range, provided seamless control over the app exergames and allowed for offline data analysis. Each participant successfully used the WOW-Mobile system at home for 8 weeks, using the app for an average of 146 (range 89-267) minutes per week with the system, actively exergaming for an average of 53% of that time (39%-59%). Energy expenditure, as measured by integrated EMG, was found to be directly proportional to the time spent on the app (Pearson correlation coefficient, r=0.57-0.86, depending on the game). Of the 4 participants, 2 did not exercise regularly before the study; these 2 participants increased from reportedly exercising close to 0 minutes per week to exergaming 58 and 158 minutes on average using the WOW-Mobile fitness system. The perceived usefulness of WOW-Mobile in motivating participants to exercise averaged 4.5 on a 5-point Likert scale and averaged 5 for the 3 participants with thoracic level injuries. The mean overall ease of use score was 4.25 out of 5. Conclusions Mobile app exergames driven by EMG have promising potential for encouraging and facilitating fitness for individuals in wheelchairs who have maintained arm and hand mobility.

Publisher

JMIR Publications Inc.

Subject

Rehabilitation,Physical Therapy, Sports Therapy and Rehabilitation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Therapy Reloaded: Temporal Neural Network-Based Platform for Processing Muscle Activity Measurement in Electromyography-Games;2024 IEEE 12th International Conference on Serious Games and Applications for Health (SeGAH);2024-08-07

2. An EMG-Based Biofeedback System for Tailored Interventions Involving Distributed Muscles;IEEE Sensors Journal;2023-11-15

3. A Review of Personal Informatics Research for People with Motor Disabilities;Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies;2022-07-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3