Enabling Agile Clinical and Translational Data Warehousing: Platform Development and Evaluation

Author:

Spengler HelmutORCID,Lang ClaudiaORCID,Mahapatra TanmayaORCID,Gatz IngridORCID,Kuhn Klaus AORCID,Prasser FabianORCID

Abstract

Background Modern data-driven medical research provides new insights into the development and course of diseases and enables novel methods of clinical decision support. Clinical and translational data warehouses, such as Informatics for Integrating Biology and the Bedside (i2b2) and tranSMART, are important infrastructure components that provide users with unified access to the large heterogeneous data sets needed to realize this and support use cases such as cohort selection, hypothesis generation, and ad hoc data analysis. Objective Often, different warehousing platforms are needed to support different use cases and different types of data. Moreover, to achieve an optimal data representation within the target systems, specific domain knowledge is needed when designing data-loading processes. Consequently, informaticians need to work closely with clinicians and researchers in short iterations. This is a challenging task as installing and maintaining warehousing platforms can be complex and time consuming. Furthermore, data loading typically requires significant effort in terms of data preprocessing, cleansing, and restructuring. The platform described in this study aims to address these challenges. Methods We formulated system requirements to achieve agility in terms of platform management and data loading. The derived system architecture includes a cloud infrastructure with unified management interfaces for multiple warehouse platforms and a data-loading pipeline with a declarative configuration paradigm and meta-loading approach. The latter compiles data and configuration files into forms required by existing loading tools, thereby automating a wide range of data restructuring and cleansing tasks. We demonstrated the fulfillment of the requirements and the originality of our approach by an experimental evaluation and a comparison with previous work. Results The platform supports both i2b2 and tranSMART with built-in security. Our experiments showed that the loading pipeline accepts input data that cannot be loaded with existing tools without preprocessing. Moreover, it lowered efforts significantly, reducing the size of configuration files required by factors of up to 22 for tranSMART and 1135 for i2b2. The time required to perform the compilation process was roughly equivalent to the time required for actual data loading. Comparison with other tools showed that our solution was the only tool fulfilling all requirements. Conclusions Our platform significantly reduces the efforts required for managing clinical and translational warehouses and for loading data in various formats and structures, such as complex entity-attribute-value structures often found in laboratory data. Moreover, it facilitates the iterative refinement of data representations in the target platforms, as the required configuration files are very compact. The quantitative measurements presented are consistent with our experiences of significantly reduced efforts for building warehousing platforms in close cooperation with medical researchers. Both the cloud-based hosting infrastructure and the data-loading pipeline are available to the community as open source software with comprehensive documentation.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3