Digital Phenotyping of Geriatric Depression Using a Community-Based Digital Mental Health Monitoring Platform for Socially Vulnerable Older Adults and Their Community Caregivers: 6-Week Living Lab Single-Arm Pilot Study

Author:

Song SunmiORCID,Seo YoungBinORCID,Hwang SeoYeonORCID,Kim Hae-YoungORCID,Kim JunesunORCID

Abstract

Background Despite the increasing need for digital services to support geriatric mental health, the development and implementation of digital mental health care systems for older adults have been hindered by a lack of studies involving socially vulnerable older adult users and their caregivers in natural living environments. Objective This study aims to determine whether digital sensing data on heart rate variability, sleep quality, and physical activity can predict same-day or next-day depressive symptoms among socially vulnerable older adults in their everyday living environments. In addition, this study tested the feasibility of a digital mental health monitoring platform designed to inform older adult users and their community caregivers about day-to-day changes in the health status of older adults. Methods A single-arm, nonrandomized living lab pilot study was conducted with socially vulnerable older adults (n=25), their community caregivers (n=16), and a managerial social worker over a 6-week period during and after the COVID-19 pandemic. Depressive symptoms were assessed daily using the 9-item Patient Health Questionnaire via scripted verbal conversations with a mobile chatbot. Digital biomarkers for depression, including heart rate variability, sleep, and physical activity, were measured using a wearable sensor (Fitbit Sense) that was worn continuously, except during charging times. Daily individualized feedback, using traffic signal signs, on the health status of older adult users regarding stress, sleep, physical activity, and health emergency status was displayed on a mobile app for the users and on a web application for their community caregivers. Multilevel modeling was used to examine whether the digital biomarkers predicted same-day or next-day depressive symptoms. Study staff conducted pre- and postsurveys in person at the homes of older adult users to monitor changes in depressive symptoms, sleep quality, and system usability. Results Among the 31 older adult participants, 25 provided data for the living lab and 24 provided data for the pre-post test analysis. The multilevel modeling results showed that increases in daily sleep fragmentation (P=.003) and sleep efficiency (P=.001) compared with one’s average were associated with an increased risk of daily depressive symptoms in older adults. The pre-post test results indicated improvements in depressive symptoms (P=.048) and sleep quality (P=.02), but not in the system usability (P=.18). Conclusions The findings suggest that wearable sensors assessing sleep quality may be utilized to predict daily fluctuations in depressive symptoms among socially vulnerable older adults. The results also imply that receiving individualized health feedback and sharing it with community caregivers may help improve the mental health of older adults. However, additional in-person training may be necessary to enhance usability. Trial Registration ClinicalTrials.gov NCT06270121; https://clinicaltrials.gov/study/NCT06270121

Publisher

JMIR Publications Inc.

Reference60 articles.

1. The old-age to working-age ratio will nearly quadruple in Korea by 2060OECD Library20222024-06-09Paris, FranceOECD Publishinghttps://tinyurl.com/axapwskj

2. Increased prevalence of depression in South Korea from 2002 to 2013

3. A Future Research Agenda for Digital Geriatric Mental Healthcare

4. World Health Organization (WHO)Mental health of older adultsWHO20232023-12-12Geneva, SwitzerlandWHOhttps://www.who.int/news-room/fact-sheets/detail/mental-health-of-older-adults

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3