In Silico Comparative Analysis of the Functional, Structural, and Evolutionary Properties of SARS-CoV-2 Variant Spike Proteins

Author:

Math Renukaradhya KORCID,Mudennavar NayanaORCID,Javaregowda Palaksha KaniveORCID,Savanur AmbujaORCID

Abstract

BackgroundA recent global outbreak of COVID-19 caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) created a pandemic and emerged as a potential threat to humanity. The analysis of virus genetic composition has revealed that the spike protein, one of the major structural proteins, facilitates the entry of the virus to host cells.ObjectiveThe spike protein has become the main target for prophylactics and therapeutics studies. Here, we compared the spike proteins of SARS-CoV-2 variants using bioinformatics tools.MethodsThe spike protein sequences of wild-type SARS-CoV-2 and its 6 variants—D614G, alpha (B.1.1.7), beta (B.1.351), delta (B.1.617.2), gamma (P.1), and omicron (B.1.1.529)—were retrieved from the NCBI database. The ClustalX program was used to sequence multiple alignment and perform mutational analysis. Several online bioinformatics tools were used to predict the physiological, immunological, and structural features of the spike proteins of SARS-CoV-2 variants. A phylogenetic tree was constructed using CLC software. Statistical analysis of the data was done using jamovi 2 software.ResultsMultiple sequence analysis revealed that the P681R mutation in the delta variant, which changed an amino acid from histidine (H) to arginine (R), made the protein more alkaline due to arginine’s high pKa value (12.5) compared to histidine’s (6.0). Physicochemical properties revealed the relatively higher isoelectric point (7.34) and aliphatic index (84.65) of the delta variant compared to other variants. Statistical analysis of the isoelectric point, antigenicity, and immunogenicity of all the variants revealed significant correlation, with P values ranging from <.007 to .04. The generation of a 2D gel map showed the separation of the delta spike protein from a grouping of the other variants. The phylogenetic tree of the spike proteins showed that the delta variant was close to and a mix of the Rousettus bat coronavirus and MERS-CoV.ConclusionsThe comparative analysis of SARS-CoV-2 variants revealed that the delta variant is more aliphatic in nature, which provides more stability to it and subsequently influences virus behavior.

Publisher

JMIR Publications Inc.

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3