Five-Feature Models to Predict Preeclampsia Onset Time From Electronic Health Record Data: Development and Validation Study

Author:

Ballard Hailey KORCID,Yang XiaotongORCID,Mahadevan Aditya DORCID,Lemas Dominick JORCID,Garmire Lana XORCID

Abstract

Background  Preeclampsia is a potentially fatal complication during pregnancy, characterized by high blood pressure and the presence of excessive proteins in the urine. Due to its complexity, the prediction of preeclampsia onset is often difficult and inaccurate. Objective  This study aimed to create quantitative models to predict the onset gestational age of preeclampsia using electronic health records. Methods  We retrospectively collected 1178 preeclamptic pregnancy records from the University of Michigan Health System as the discovery cohort, and 881 records from the University of Florida Health System as the validation cohort. We constructed 2 Cox-proportional hazards models: 1 baseline model using maternal and pregnancy characteristics, and the other full model with additional laboratory findings, vitals, and medications. We built the models using 80% of the discovery data, tested the remaining 20% of the discovery data, and validated with the University of Florida data. We further stratified the patients into high- and low-risk groups for preeclampsia onset risk assessment. Results  The baseline model reached Concordance indices of 0.64 and 0.61 in the 20% testing data and the validation data, respectively, while the full model increased these Concordance indices to 0.69 and 0.61, respectively. For preeclampsia diagnosed at 34 weeks, the baseline and full models had area under the curve (AUC) values of 0.65 and 0.70, and AUC values of 0.69 and 0.70 for preeclampsia diagnosed at 37 weeks, respectively. Both models contain 5 selective features, among which the number of fetuses in the pregnancy, hypertension, and parity are shared between the 2 models with similar hazard ratios and significant P values. In the full model, maximum diastolic blood pressure in early pregnancy was the predominant feature. Conclusions  Electronic health records data provide useful information to predict the gestational age of preeclampsia onset. Stratification of the cohorts using 5-predictor Cox-proportional hazards models provides clinicians with convenient tools to assess the onset time of preeclampsia in patients.

Publisher

JMIR Publications Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3