An Approach to Potentially Increasing Adoption of an Artificial Intelligence–Enabled Electronic Medical Record Encounter in Canadian Primary Care: Protocol for a User-Centered Design

Author:

Francisco Krizia MaeORCID,Burns Catherine MORCID

Abstract

Background Primary care physicians are at the forefront of the clinical process that can lead to diagnosis, referral, and treatment. With electronic medical records (EMRs) being introduced and, over time, gaining acceptance by primary care users, they have now become a standard part of care. EMRs have the potential to be further optimized with the introduction of artificial intelligence (AI). There has yet to be a widespread exploration of the use of AI in primary health care and how clinicians envision AI use to encourage further uptake. Objective The primary objective of this research is to understand if the user-centered design approach, rooted in contextual design, can lead to an increased likelihood of adoption of an AI-enabled encounter module embedded in a primary care EMR. In this study, we use human factor models and the technology acceptance model to understand the results. Methods To accomplish this, a partnership has been established with an industry partner, TELUS Health, to use their EMR, the collaborative health record. The overall intention is to understand how to improve the user experience by using user-centered design to inform how AI should be embedded in an EMR encounter. Given this intention, a user-centered approach will be used to accomplish it. The approach of user-centered design requires qualitative interviewing to gain a clear understanding of users’ approaches, intentions, and other key insights to inform the design process. A total of 5 phases have been designed for this study. Results As of March 2024, a total of 14 primary care clinician participants have been recruited and interviewed. First-cycle coding of all qualitative data results is being conducted to inform redesign considerations. Conclusions Some limitations need to be acknowledged related to the approach of this study. There is a lack of market maturity of AI-enabled EMR encounters in primary care, requiring research to take place through scenario-based interviews. However, this participant group will still help inform design considerations for this tool. This study is targeted for completion in the late fall of 2024. International Registered Report Identifier (IRRID) DERR1-10.2196/54365

Publisher

JMIR Publications Inc.

Reference24 articles.

1. Primary Care Payment Models in Ontario20242024-05-13https://www.ontario.ca/page/primary-care-payment-models-ontario

2. JohnsonTInternational survey results reveal challenges experienced by family doctorsCIHI2024-05-13https://www.cihi.ca/en/news/international-survey-results-reveal-challenges-experienced-by-family-doctors

3. OntarioMDWhat is an EMR?EMR Certification Program FAQ20242024-06-25https://tinyurl.com/bdhxm7au

4. Understanding continuance intentions of physicians with electronic medical records (EMR): An expectancy-confirmation perspective

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3