Use of Multiprognostic Index Domain Scores, Clinical Data, and Machine Learning to Improve 12-Month Mortality Risk Prediction in Older Hospitalized Patients: Prospective Cohort Study

Author:

Woodman Richard JohnORCID,Bryant KimberleyORCID,Sorich Michael JORCID,Pilotto AlbertoORCID,Mangoni Arduino AleksanderORCID

Abstract

Background The Multidimensional Prognostic Index (MPI) is an aggregate, comprehensive, geriatric assessment scoring system derived from eight domains that predict adverse outcomes, including 12-month mortality. However, the prediction accuracy of using the three MPI categories (mild, moderate, and severe risk) was relatively poor in a study of older hospitalized Australian patients. Prediction modeling using the component domains of the MPI together with additional clinical features and machine learning (ML) algorithms might improve prediction accuracy. Objective This study aims to assess whether the accuracy of prediction for 12-month mortality using logistic regression with maximum likelihood estimation (LR-MLE) with the 3-category MPI together with age and gender (feature set 1) can be improved with the addition of 10 clinical features (sodium, hemoglobin, albumin, creatinine, urea, urea-to-creatinine ratio, estimated glomerular filtration rate, C-reactive protein, BMI, and anticholinergic risk score; feature set 2) and the replacement of the 3-category MPI in feature sets 1 and 2 with the eight separate MPI domains (feature sets 3 and 4, respectively), and to assess the prediction accuracy of the ML algorithms using the same feature sets. Methods MPI and clinical features were collected from patients aged 65 years and above who were admitted to either the general medical or acute care of the elderly wards of a South Australian hospital between September 2015 and February 2017. The diagnostic accuracy of LR-MLE was assessed together with nine ML algorithms: decision trees, random forests, extreme gradient boosting (XGBoost), support-vector machines, naïve Bayes, K-nearest neighbors, ridge regression, logistic regression without regularization, and neural networks. A 70:30 training set:test set split of the data and a grid search of hyper-parameters with 10-fold cross-validation—was used during model training. The area under the curve was used as the primary measure of accuracy. Results A total of 737 patients (female: 370/737, 50.2%; male: 367/737, 49.8%) with a median age of 80 (IQR 72-86) years had complete MPI data recorded on admission and had completed the 12-month follow-up. The area under the receiver operating curve for LR-MLE was 0.632, 0.688, 0.738, and 0.757 for feature sets 1 to 4, respectively. The best overall accuracy for the nine ML algorithms was obtained using the XGBoost algorithm (0.635, 0.706, 0.756, and 0.757 for feature sets 1 to 4, respectively). Conclusions The use of MPI domains with LR-MLE considerably improved the prediction accuracy compared with that obtained using the traditional 3-category MPI. The XGBoost ML algorithm slightly improved accuracy compared with LR-MLE, and adding clinical data improved accuracy. These results build on previous work on the MPI and suggest that implementing risk scores based on MPI domains and clinical data by using ML prediction models can support clinical decision-making with respect to risk stratification for the follow-up care of older hospitalized patients.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3