A Biofeedback App to Instruct Abdominal Breathing (Breathing-Mentor): Pilot Experiment

Author:

Faust-Christmann Corinna AnnaORCID,Taetz BertramORCID,Zolynski GregorORCID,Zimmermann TobiasORCID,Bleser GabrieleORCID

Abstract

Background Deep and slow abdominal breathing is an important skill for the management of stress and pain. However, despite multiple proofs on the effectiveness of biofeedback, most breathing apps remain limited to pacing specific breathing patterns, without sensor feedback on the actual breathing behavior. Objective To fill this gap, an app named Breathing-Mentor was developed. This app combines effective visualization of the instruction with biofeedback on deep abdominal breathing, based on the mobile phone’s accelerometers. The aim of this pilot study was to investigate users’ feedback and breathing behavior during initial contact with the app. Methods To reveal the possible effects of biofeedback, two versions of the mobile app were developed. Both contained the same visual instruction, but only the full version included additional biofeedback. In total, 40 untrained participants were randomly assigned to one of the two versions of the app. They had to follow the app’s instructions as closely as possible for 5 min. Results The group with additional biofeedback showed an increased signal-to-noise ratio for instructed breathing frequency (0.1 Hz) compared with those using visual instruction without biofeedback (F1,37=4.18; P<.048). During this initial contact with the full version, self-reported relaxation effectivity was, however, lower than the group using visual instruction without biofeedback (t37=−2.36; P=.02), probably owing to increased cognitive workload to follow the instruction. Conclusions This study supports the feasibility and usefulness of incorporating biofeedback in the Breathing-Mentor app to train abdominal breathing. Immediate effects on relaxation levels should, however, not be expected for untrained users.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3