Computer-Supported Collaborative Design of Standardized Clinical Cases: Algorithm Development and Validation

Author:

Guinez-Molinos SergioORCID,Buendía-García FélixORCID,Sierra-Rodríguez José-LuisORCID,Gayoso-Cabada JoaquínORCID,González-Díaz JaimeORCID

Abstract

Abstract Background The creation of computer-supported collaborative clinical cases is an area of educational research that has been widely studied. However, the reuse of cases and their sharing with other platforms is a problem, as it encapsulates knowledge in isolated platforms without interoperability. This paper proposed a workflow ecosystem for the collaborative design and distribution of clinical cases through web-based computing platforms that (1) allow medical students to create clinical cases collaboratively in a dedicated environment; (2) make it possible to export these clinical cases in terms of the Health Level 7 (HL7) Fast Healthcare Interoperability Resources (FHIR) interoperability standard; (3) provide support to transform imported cases into learning object repositories; and (4) use e-learning standards (eg, Instructional Management Systems Content Packaging [IMS-CP] or Sharable Content Object Reference Model [SCORM]) to incorporate this content into widely-used learning management systems (LMSs), letting medical students democratize a valuable knowledge that would otherwise be confined within proprietary platforms. Objective This study aimed to demonstrate the feasibility of developing a workflow ecosystem based on IT platforms to enable the collaborative creation, export, and deployment of clinical cases. Methods The ecosystem infrastructure for computer-supported collaborative design of standardized clinical cases consists of three platforms: (1) Mosaico, a platform used in the design of clinical cases; (2) Clavy, a tool for the flexible management of learning object repositories, which is used to orchestrate the transformation and processing of these clinical cases; and (3) Moodle, an LMS that is geared toward publishing the processed clinical cases and delivering their course deployment stages in IMS-CP or SCORM format. The generation of cases in Mosaico is exported in the HL7 FHIR interoperability standard to Clavy, which is then responsible for creating and deploying a learning object in Moodle. Results The main result was an interoperable ecosystem that demonstrates the feasibility of automating the stages of collaborative clinical case creation, export through HL7 FHIR standards, and deployment in an LMS. This ecosystem enables the generation of IMS-CPs associated with the original Mosaico clinical cases that can be deployed in conventional third-party LMSs, thus allowing the democratization and sharing of clinical cases to different platforms in standard and interoperable formats. Conclusions In this paper, we proposed, implemented, and demonstrated the feasibility of developing a standards-based workflow that interoperates multiple platforms with heterogeneous technologies to create, transform, and deploy clinical cases on the web. This achieves the objective of transforming the created cases into a platform for web-based deployment in an LMS.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3