Using Multimodal Assessments to Capture Personalized Contexts of College Student Well-being in 2020: Case Study

Author:

Lai JocelynORCID,Rahmani AmirORCID,Yunusova AsalORCID,Rivera Alexander PORCID,Labbaf SinaORCID,Hu SiruiORCID,Dutt NikilORCID,Jain RameshORCID,Borelli Jessica LORCID

Abstract

Background The year 2020 has been challenging for many, particularly for young adults who have been adversely affected by the COVID-19 pandemic. Emerging adulthood is a developmental phase with significant changes in the patterns of daily living; it is a risky phase for the onset of major mental illness. College students during the pandemic face significant risk, potentially losing several protective factors (eg, housing, routine, social support, job, and financial security) that are stabilizing for mental health and physical well-being. Individualized multiple assessments of mental health, referred to as multimodal personal chronicles, present an opportunity to examine indicators of health in an ongoing and personalized way using mobile sensing devices and wearable internet of things. Objective To assess the feasibility and provide an in-depth examination of the impact of the COVID-19 pandemic on college students through multimodal personal chronicles, we present a case study of an individual monitored using a longitudinal subjective and objective assessment approach over a 9-month period throughout 2020, spanning the prepandemic period of January through September. Methods The individual, referred to as Lee, completed psychological assessments measuring depression, anxiety, and loneliness across 4 time points in January, April, June, and September. We used the data emerging from the multimodal personal chronicles (ie, heart rate, sleep, physical activity, affect, behaviors) in relation to psychological assessments to understand patterns that help to explicate changes in the individual’s psychological well-being across the pandemic. Results Over the course of the pandemic, Lee’s depression severity was highest in April, shortly after shelter-in-place orders were mandated. His depression severity remained mildly severe throughout the rest of the months. Associations in positive and negative affect, physiology, sleep, and physical activity patterns varied across time periods. Lee’s positive affect and negative affect were positively correlated in April (r=0.53, P=.04) whereas they were negatively correlated in September (r=–0.57, P=.03). Only in the month of January was sleep negatively associated with negative affect (r=–0.58, P=.03) and diurnal beats per minute (r=–0.54, P=.04), and then positively associated with heart rate variability (resting root mean square of successive differences between normal heartbeats) (r=0.54, P=.04). When looking at his available contextual data, Lee noted certain situations as supportive coping factors and other situations as potential stressors. Conclusions We observed more pandemic concerns in April and noticed other contextual events relating to this individual’s well-being, reflecting how college students continue to experience life events during the pandemic. The rich monitoring data alongside contextual data may be beneficial for clinicians to understand client experiences and offer personalized treatment plans. We discuss benefits as well as future directions of this system, and the conclusions we can draw regarding the links between the COVID-19 pandemic and college student mental health.

Publisher

JMIR Publications Inc.

Subject

Computer Science Applications,Health Informatics,Medicine (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3