Predictive Modeling for Frailty Conditions in Elderly People: Machine Learning Approaches

Author:

Tarekegn AdaneORCID,Ricceri FulvioORCID,Costa GiuseppeORCID,Ferracin ElisaORCID,Giacobini MarioORCID

Abstract

Background Frailty is one of the most critical age-related conditions in older adults. It is often recognized as a syndrome of physiological decline in late life, characterized by a marked vulnerability to adverse health outcomes. A clear operational definition of frailty, however, has not been agreed so far. There is a wide range of studies on the detection of frailty and their association with mortality. Several of these studies have focused on the possible risk factors associated with frailty in the elderly population while predicting who will be at increased risk of frailty is still overlooked in clinical settings. Objective The objective of our study was to develop predictive models for frailty conditions in older people using different machine learning methods based on a database of clinical characteristics and socioeconomic factors. Methods An administrative health database containing 1,095,612 elderly people aged 65 or older with 58 input variables and 6 output variables was used. We first identify and define six problems/outputs as surrogates of frailty. We then resolve the imbalanced nature of the data through resampling process and a comparative study between the different machine learning (ML) algorithms – Artificial neural network (ANN), Genetic programming (GP), Support vector machines (SVM), Random Forest (RF), Logistic regression (LR) and Decision tree (DT) – was carried out. The performance of each model was evaluated using a separate unseen dataset. Results Predicting mortality outcome has shown higher performance with ANN (TPR 0.81, TNR 0.76, accuracy 0.78, F1-score 0.79) and SVM (TPR 0.77, TNR 0.80, accuracy 0.79, F1-score 0.78) than predicting the other outcomes. On average, over the six problems, the DT classifier has shown the lowest accuracy, while other models (GP, LR, RF, ANN, and SVM) performed better. All models have shown lower accuracy in predicting an event of an emergency admission with red code than predicting fracture and disability. In predicting urgent hospitalization, only SVM achieved better performance (TPR 0.75, TNR 0.77, accuracy 0.73, F1-score 0.76) with the 10-fold cross validation compared with other models in all evaluation metrics. Conclusions We developed machine learning models for predicting frailty conditions (mortality, urgent hospitalization, disability, fracture, and emergency admission). The results show that the prediction performance of machine learning models significantly varies from problem to problem in terms of different evaluation metrics. Through further improvement, the model that performs better can be used as a base for developing decision-support tools to improve early identification and prediction of frail older adults.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

Reference51 articles.

1. Health statistics and information systems: proposed working definition of an older person in Africa for the MDS Project2020-05-18GenevaWorld Health Organizationhttp://www.who.int/healthinfo/survey/ageingdefnolder/en/index.html

2.

Frailty syndrome: implications and challenges for health care policy

3. United Nations2020-05-18World Population Ageing 2017 Highlightshttps://www.un.org/en/development/desa/population/publications/pdf/ageing/WPA2017_Highlights.pdf

4. The increase in healthcare costs associated with frailty in older people discharged to a post-acute transition care program

5. A global clinical measure of fitness and frailty in elderly people

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3