Causal Modeling to Mitigate Selection Bias and Unmeasured Confounding in Internet-Based Epidemiology of COVID-19: Model Development and Validation

Author:

Stockham NathanielORCID,Washington PeterORCID,Chrisman BriannaORCID,Paskov KelleyORCID,Jung Jae-YoonORCID,Wall Dennis PaulORCID

Abstract

Background Selection bias and unmeasured confounding are fundamental problems in epidemiology that threaten study internal and external validity. These phenomena are particularly dangerous in internet-based public health surveillance, where traditional mitigation and adjustment methods are inapplicable, unavailable, or out of date. Recent theoretical advances in causal modeling can mitigate these threats, but these innovations have not been widely deployed in the epidemiological community. Objective The purpose of our paper is to demonstrate the practical utility of causal modeling to both detect unmeasured confounding and selection bias and guide model selection to minimize bias. We implemented this approach in an applied epidemiological study of the COVID-19 cumulative infection rate in the New York City (NYC) spring 2020 epidemic. Methods We collected primary data from Qualtrics surveys of Amazon Mechanical Turk (MTurk) crowd workers residing in New Jersey and New York State across 2 sampling periods: April 11-14 and May 8-11, 2020. The surveys queried the subjects on household health status and demographic characteristics. We constructed a set of possible causal models of household infection and survey selection mechanisms and ranked them by compatibility with the collected survey data. The most compatible causal model was then used to estimate the cumulative infection rate in each survey period. Results There were 527 and 513 responses collected for the 2 periods, respectively. Response demographics were highly skewed toward a younger age in both survey periods. Despite the extremely strong relationship between age and COVID-19 symptoms, we recovered minimally biased estimates of the cumulative infection rate using only primary data and the most compatible causal model, with a relative bias of +3.8% and –1.9% from the reported cumulative infection rate for the first and second survey periods, respectively. Conclusions We successfully recovered accurate estimates of the cumulative infection rate from an internet-based crowdsourced sample despite considerable selection bias and unmeasured confounding in the primary data. This implementation demonstrates how simple applications of structural causal modeling can be effectively used to determine falsifiable model conditions, detect selection bias and confounding factors, and minimize estimate bias through model selection in a novel epidemiological context. As the disease and social dynamics of COVID-19 continue to evolve, public health surveillance protocols must continue to adapt; the emergence of Omicron variants and shift to at-home testing as recent challenges. Rigorous and transparent methods to develop, deploy, and diagnosis adapted surveillance protocols will be critical to their success.

Publisher

JMIR Publications Inc.

Subject

Public Health, Environmental and Occupational Health,Health Informatics

Reference44 articles.

1. Selection Mechanisms and Their Consequences: Understanding and Addressing Selection Bias

2. A Structural Approach to Selection Bias

3. Causality

4. Causal inference and the data-fusion problem

5. RichardsonTRobinsJA Unification of the Counterfactual and Graphical Approaches to Causality. Working Paper. Single World Intervention Graphs (SWIGs)2022-02-26https://csss.uw.edu/files/working-papers/2013/wp128.pdf

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3