Modified Bidirectional Encoder Representations From Transformers Extractive Summarization Model for Hospital Information Systems Based on Character-Level Tokens (AlphaBERT): Development and Performance Evaluation

Author:

Chen Yen-PinORCID,Chen Yi-YingORCID,Lin Jr-JiunORCID,Huang Chien-HuaORCID,Lai FeipeiORCID

Abstract

Background Doctors must care for many patients simultaneously, and it is time-consuming to find and examine all patients’ medical histories. Discharge diagnoses provide hospital staff with sufficient information to enable handling multiple patients; however, the excessive amount of words in the diagnostic sentences poses problems. Deep learning may be an effective solution to overcome this problem, but the use of such a heavy model may also add another obstacle to systems with limited computing resources. Objective We aimed to build a diagnoses-extractive summarization model for hospital information systems and provide a service that can be operated even with limited computing resources. Methods We used a Bidirectional Encoder Representations from Transformers (BERT)-based structure with a two-stage training method based on 258,050 discharge diagnoses obtained from the National Taiwan University Hospital Integrated Medical Database, and the highlighted extractive summaries written by experienced doctors were labeled. The model size was reduced using a character-level token, the number of parameters was decreased from 108,523,714 to 963,496, and the model was pretrained using random mask characters in the discharge diagnoses and International Statistical Classification of Diseases and Related Health Problems sets. We then fine-tuned the model using summary labels and cleaned up the prediction results by averaging all probabilities for entire words to prevent character level–induced fragment words. Model performance was evaluated against existing models BERT, BioBERT, and Long Short-Term Memory (LSTM) using the Recall-Oriented Understudy for Gisting Evaluation (ROUGE) L score, and a questionnaire website was built to collect feedback from more doctors for each summary proposal. Results The area under the receiver operating characteristic curve values of the summary proposals were 0.928, 0.941, 0.899, and 0.947 for BERT, BioBERT, LSTM, and the proposed model (AlphaBERT), respectively. The ROUGE-L scores were 0.697, 0.711, 0.648, and 0.693 for BERT, BioBERT, LSTM, and AlphaBERT, respectively. The mean (SD) critique scores from doctors were 2.232 (0.832), 2.134 (0.877), 2.207 (0.844), 1.927 (0.910), and 2.126 (0.874) for reference-by-doctor labels, BERT, BioBERT, LSTM, and AlphaBERT, respectively. Based on the paired t test, there was a statistically significant difference in LSTM compared to the reference (P<.001), BERT (P=.001), BioBERT (P<.001), and AlphaBERT (P=.002), but not in the other models. Conclusions Use of character-level tokens in a BERT model can greatly decrease the model size without significantly reducing performance for diagnoses summarization. A well-developed deep-learning model will enhance doctors’ abilities to manage patients and promote medical studies by providing the capability to use extensive unstructured free-text notes.

Publisher

JMIR Publications Inc.

Subject

Health Information Management,Health Informatics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3