Differences in Brain Activity and Body Movements Between Virtual Reality and Offline Exercise: Randomized Crossover Trial

Author:

Kim Hee JinORCID,Lee Jea WoogORCID,Choi GangtaORCID,Huh JunghoonORCID,Han Doug HyunORCID

Abstract

Background Virtual reality (VR) has been suggested to be effective at enhancing physical exercises because of its immersive characteristics. However, few studies have quantitatively assessed the range of motion and brain activity during VR exercises. Objective We hypothesized that 3D immersive VR could stimulate body movement and brain activity more effectively than standard exercises and that the increased range of motions during 3D immersive VR exercises would be associated with orbitofrontal activation. Methods A randomized crossover trial was conducted to compare exercises with and without VR. A total of 24 healthy males performed the same motions when exercising with and without 3D immersive VR, and the recorded videos were used for motion analysis. Hemodynamic changes in the prefrontal cortex were assessed using functional near-infrared spectroscopy. Results There were significant differences in the total angle (z=−2.31; P=.02), length (z=−2.78; P=.005), calorie consumption (z=−3.04; P=.002), and change in accumulated oxygenated hemoglobin within the right orbitofrontal cortex (F1,94=9.36; P=.003) between the VR and offline trials. Hemodynamic changes in the right orbitofrontal cortex were positively correlated with the total angle (r=0.45; P=.001) and length (r=0.38; P=.007) in the VR exercise; however, there was no significant correlation in the offline trial. Conclusions The results of this study suggest that 3D immersive VR exercise effectively increases the range of motion in healthy individuals in relation to orbitofrontal activation. Trial Registration Clinical Research Information Service KCT0008021; https://cris.nih.go.kr/cris/search/detailSearch.do/23671

Publisher

JMIR Publications Inc.

Subject

Psychiatry and Mental health,Rehabilitation,Biomedical Engineering,Physical Therapy, Sports Therapy and Rehabilitation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3