Emergency Telemedicine Mobile Ultrasounds Using a 5G-Enabled Application: Development and Usability Study

Author:

Berlet MaximilianORCID,Vogel ThomasORCID,Gharba MohamedORCID,Eichinger JosephORCID,Schulz EgonORCID,Friess HelmutORCID,Wilhelm DirkORCID,Ostler DanielORCID,Kranzfelder MichaelORCID

Abstract

Background Digitalization affects almost every aspect of modern daily life, including a growing number of health care services along with telemedicine applications. Fifth-generation (5G) mobile communication technology has the potential to meet the requirements for this digitalized future with high bandwidths (10 GB/s), low latency (<1 ms), and high quality of service, enabling wireless real-time data transmission in telemedical emergency health care applications. Objective The aim of this study is the development and clinical evaluation of a 5G usability test framework enabling preclinical diagnostics with mobile ultrasound using 5G network technology. Methods A bidirectional audio-video data transmission between the ambulance car and hospital was established, combining both 5G-radio and -core network parts. Besides technical performance evaluations, a medical assessment of transferred ultrasound image quality and transmission latency was examined. Results Telemedical and clinical application properties of the ultrasound probe were rated 1 (very good) to 2 (good; on a 6 -point Likert scale rated by 20 survey participants). The 5G field test revealed an average end-to-end round trip latency of 10 milliseconds. The measured average throughput for the ultrasound image traffic was 4 Mbps and for the video stream 12 Mbps. Traffic saturation revealed a lower video quality and a slower video stream. Without core slicing, the throughput for the video application was reduced to 8 Mbps. The deployment of core network slicing facilitated quality and latency recovery. Conclusions Bidirectional data transmission between ambulance car and remote hospital site was successfully established through the 5G network, facilitating sending/receiving data and measurements from both applications (ultrasound unit and video streaming). Core slicing was implemented for a better user experience. Clinical evaluation of the telemedical transmission and applicability of the ultrasound probe was consistently positive.

Publisher

JMIR Publications Inc.

Subject

Computer Science Applications,Health Informatics,Medicine (miscellaneous)

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3