Predicting Hepatocellular Carcinoma With Minimal Features From Electronic Health Records: Development of a Deep Learning Model

Author:

Liang Chia-WeiORCID,Yang Hsuan-ChiaORCID,Islam Md MohaimenulORCID,Nguyen Phung Anh AlexORCID,Feng Yi-TingORCID,Hou Ze YuORCID,Huang Chih-WeiORCID,Poly Tahmina NasrinORCID,Li Yu-Chuan JackORCID

Abstract

Background Hepatocellular carcinoma (HCC), usually known as hepatoma, is the third leading cause of cancer mortality globally. Early detection of HCC helps in its treatment and increases survival rates. Objective The aim of this study is to develop a deep learning model, using the trend and severity of each medical event from the electronic health record to accurately predict the patients who will be diagnosed with HCC in 1 year. Methods Patients with HCC were screened out from the National Health Insurance Research Database of Taiwan between 1999 and 2013. To be included, the patients with HCC had to register as patients with cancer in the catastrophic illness file and had to be diagnosed as a patient with HCC in an inpatient admission. The control cases (non-HCC patients) were randomly sampled from the same database. We used age, gender, diagnosis code, drug code, and time information as the input variables of a convolution neural network model to predict those patients with HCC. We also inspected the highly weighted variables in the model and compared them to their odds ratio at HCC to understand how the predictive model works Results We included 47,945 individuals, 9553 of whom were patients with HCC. The area under the receiver operating curve (AUROC) of the model for predicting HCC risk 1 year in advance was 0.94 (95% CI 0.937-0.943), with a sensitivity of 0.869 and a specificity 0.865. The AUROC for predicting HCC patients 7 days, 6 months, 1 year, 2 years, and 3 years early were 0.96, 0.94, 0.94, 0.91, and 0.91, respectively. Conclusions The findings of this study show that the convolutional neural network model has immense potential to predict the risk of HCC 1 year in advance with minimal features available in the electronic health records.

Publisher

JMIR Publications Inc.

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3