Real-world Implementation of an eHealth System Based on Artificial Intelligence Designed to Predict and Reduce Emergency Department Visits by Older Adults: Pragmatic Trial

Author:

Belmin JoëlORCID,Villani PatrickORCID,Gay MathiasORCID,Fabries StéphaneORCID,Havreng-Théry CharlotteORCID,Malvoisin StéphanieORCID,Denis FabriceORCID,Veyron Jacques-HenriORCID

Abstract

Background Frail older people use emergency services extensively, and digital systems that monitor health remotely could be useful in reducing these visits by earlier detection of worsening health conditions. Objective We aimed to implement a system that produces alerts when the machine learning algorithm identifies a short-term risk for an emergency department (ED) visit and examine health interventions delivered after these alerts and users’ experience. This study highlights the feasibility of the general system and its performance in reducing ED visits. It also evaluates the accuracy of alerts’ prediction. Methods An uncontrolled multicenter trial was conducted in community-dwelling older adults receiving assistance from home aides (HAs). We implemented an eHealth system that produces an alert for a high risk of ED visits. After each home visit, the HAs completed a questionnaire on participants’ functional status, using a smartphone app, and the information was processed in real time by a previously developed machine learning algorithm that identifies patients at risk of an ED visit within 14 days. In case of risk, the eHealth system alerted a coordinating nurse who could then inform the family carer and the patient’s nurses or general practitioner. The primary outcomes were the rate of ED visits and the number of deaths after alert-triggered health interventions (ATHIs) and users’ experience with the eHealth system; the secondary outcome was the accuracy of the eHealth system in predicting ED visits. Results We included 206 patients (mean age 85, SD 8 years; 161/206, 78% women) who received aid from 109 HAs, and the mean follow-up period was 10 months. The HAs monitored 2656 visits, which resulted in 405 alerts. Two ED visits were recorded following 131 alerts with an ATHI (2/131, 1.5%), whereas 36 ED visits were recorded following 274 alerts that did not result in an ATHI (36/274, 13.4%), corresponding to an odds ratio of 0.10 (95% IC 0.02-0.43; P<.001). Five patients died during the study. All had alerts, 4 did not have an ATHI and were hospitalized, and 1 had an ATHI (P=.04). In terms of overall usability, the digital system was easy to use for 90% (98/109) of HAs, and response time was acceptable for 89% (98/109) of them. Conclusions The eHealth system has been successfully implemented, was appreciated by users, and produced relevant alerts. ATHIs were associated with a lower rate of ED visits, suggesting that the eHealth system might be effective in lowering the number of ED visits in this population. Trial Registration clinicaltrials.gov NCT05221697; https://clinicaltrials.gov/ct2/show/NCT05221697.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3