Exploring the Privacy-Preserving Properties of Word Embeddings: Algorithmic Validation Study

Author:

Abdalla MohamedORCID,Abdalla MoustafaORCID,Hirst GraemeORCID,Rudzicz FrankORCID

Abstract

Background Word embeddings are dense numeric vectors used to represent language in neural networks. Until recently, there had been no publicly released embeddings trained on clinical data. Our work is the first to study the privacy implications of releasing these models. Objective This paper aims to demonstrate that traditional word embeddings created on clinical corpora that have been deidentified by removing personal health information (PHI) can nonetheless be exploited to reveal sensitive patient information. Methods We used embeddings created from 400,000 doctor-written consultation notes and experimented with 3 common word embedding methods to explore the privacy-preserving properties of each. Results We found that if publicly released embeddings are trained from a corpus anonymized by PHI removal, it is possible to reconstruct up to 68.5% (n=411/600) of the full names that remain in the deidentified corpus and associated sensitive information to specific patients in the corpus from which the embeddings were created. We also found that the distance between the word vector representation of a patient’s name and a diagnostic billing code is informative and differs significantly from the distance between the name and a code not billed for that patient. Conclusions Special care must be taken when sharing word embeddings created from clinical texts, as current approaches may compromise patient privacy. If PHI removal is used for anonymization before traditional word embeddings are trained, it is possible to attribute sensitive information to patients who have not been fully deidentified by the (necessarily imperfect) removal algorithms. A promising alternative (ie, anonymization by PHI replacement) may avoid these flaws. Our results are timely and critical, as an increasing number of researchers are pushing for publicly available health data.

Publisher

JMIR Publications Inc.

Subject

Health Informatics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3