The Roles of a Secondary Data Analytics Tool and Experience in Scientific Hypothesis Generation in Clinical Research: Protocol for a Mixed Methods Study

Author:

Jing XiaORCID,Patel Vimla LORCID,Cimino James JORCID,Shubrook Jay HORCID,Zhou YuchunORCID,Liu ChangORCID,De Lacalle SonsolesORCID

Abstract

BackgroundScientific hypothesis generation is a critical step in scientific research that determines the direction and impact of any investigation. Despite its vital role, we have limited knowledge of the process itself, thus hindering our ability to address some critical questions.ObjectiveThis study aims to answer the following questions: To what extent can secondary data analytics tools facilitate the generation of scientific hypotheses during clinical research? Are the processes similar in developing clinical diagnoses during clinical practice and developing scientific hypotheses for clinical research projects? Furthermore, this study explores the process of scientific hypothesis generation in the context of clinical research. It was designed to compare the role of VIADS, a visual interactive analysis tool for filtering and summarizing large data sets coded with hierarchical terminologies, and the experience levels of study participants during the scientific hypothesis generation process.MethodsThis manuscript introduces a study design. Experienced and inexperienced clinical researchers are being recruited since July 2021 to take part in this 2×2 factorial study, in which all participants use the same data sets during scientific hypothesis–generation sessions and follow predetermined scripts. The clinical researchers are separated into experienced or inexperienced groups based on predetermined criteria and are then randomly assigned into groups that use and do not use VIADS via block randomization. The study sessions, screen activities, and audio recordings of participants are captured. Participants use the think-aloud protocol during the study sessions. After each study session, every participant is given a follow-up survey, with participants using VIADS completing an additional modified System Usability Scale survey. A panel of clinical research experts will assess the scientific hypotheses generated by participants based on predeveloped metrics. All data will be anonymized, transcribed, aggregated, and analyzed.ResultsData collection for this study began in July 2021. Recruitment uses a brief online survey. The preliminary results showed that study participants can generate a few to over a dozen scientific hypotheses during a 2-hour study session, regardless of whether they used VIADS or other analytics tools. A metric to more accurately, comprehensively, and consistently assess scientific hypotheses within a clinical research context has been developed.ConclusionsThe scientific hypothesis–generation process is an advanced cognitive activity and a complex process. Our results so far show that clinical researchers can quickly generate initial scientific hypotheses based on data sets and prior experience. However, refining these scientific hypotheses is a much more time-consuming activity. To uncover the fundamental mechanisms underlying the generation of scientific hypotheses, we need breakthroughs that can capture thinking processes more precisely.International Registered Report Identifier (IRRID)DERR1-10.2196/39414

Publisher

JMIR Publications Inc.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3